This Page is Locked

Get access to this page and all premium solutions, videos, and worksheets by joining Teachoo Black.

  • βœ… 100% Ad-free learning
  • βœ… HD video solutions in Hinglish
  • βœ… Worksheets & Sample Papers
  • βœ… Step-by-step explanations
  • βœ… Access on any device
Unlock All Content (less than β‚Ή2/day)
Trusted by thousands of parents & students
Remove Ads

Transcript

Question 32 Draw the rough sketch of the curve 𝑦=20 cos 2π‘₯; (where πœ‹/6≀π‘₯β‰€πœ‹/3) Using integration, find the area of the region bounded by the curve y=20 cos2x from the ordinates π‘₯=πœ‹/6 to π‘₯=πœ‹/3 and the π‘₯-axis.Now, 𝑦=20 cos 2π‘₯; Since πœ‹/6≀π‘₯β‰€πœ‹/3, We find value of y at key points At x = 𝝅/πŸ” 𝑦=20 cos 2(πœ‹/6) = 20 cos πœ‹/3 = 20 Γ—1/2 = 𝟏𝟎 At x = 𝝅/πŸ‘ 𝑦=20 cos 2(πœ‹/3) = 20 cos 2πœ‹/3 = 20 cos(πœ‹βˆ’πœ‹/3) = 20 Γ— βˆ’ cos πœ‹/3 = 20 Γ—(βˆ’1)/2 = βˆ’πŸπŸŽ At x = 𝝅/πŸ’ 𝑦=20 cos 2(πœ‹/4) = 20 cos πœ‹/2 = 20 Γ—0 = 𝟎 Thus, graph of 𝑦=20 cos 2π‘₯ is Now, Area Required = Area ADB + Area BEC + Area DEF Area ADB Area ADB = ∫_(πœ‹/6)^(πœ‹/( 4))▒〖𝑦 𝑑π‘₯γ€— 𝑦→20 cos⁑2π‘₯ = ∫_(πœ‹/6)^(𝝅/( πŸ’))β–’γ€–πŸπŸŽ π’„π’π’”β‘πŸπ’™ 𝒅𝒙〗 = 20[sin⁑2π‘₯/2]_(πœ‹/6)^(πœ‹/4) =10[sin⁑2(πœ‹/4)βˆ’sin⁑2(πœ‹/6) ] =10[sin⁑(πœ‹/2)βˆ’sin⁑(πœ‹/6) ] =10[1βˆ’βˆš3/2] =10[(2 βˆ’ √3)/2] =5(2 βˆ’ √3) =10βˆ’5(2 βˆ’ √3) =10[(2 βˆ’ √3)/2] =5(2 βˆ’ √3) =πŸπŸŽβˆ’πŸ“βˆšπŸ‘ Area BEC Area BEC = ∫_(πœ‹/4)^(πœ‹/( 3))▒〖𝑦 𝑑π‘₯γ€— 𝑦→20 cos⁑2π‘₯ = ∫_(πœ‹/4)^(𝝅/( πŸ‘))β–’γ€–πŸπŸŽ π’„π’π’”β‘πŸπ’™ 𝒅𝒙〗 = 20[sin⁑2π‘₯/2]_(πœ‹/4)^(πœ‹/3) =10[sin⁑2(πœ‹/3)βˆ’sin⁑2(πœ‹/4) ] =10[sin⁑(2πœ‹/3)βˆ’sin⁑(πœ‹/2) ] =10[sin⁑(πœ‹βˆ’πœ‹/3)βˆ’sin⁑(πœ‹/2) ] =10[sin⁑(πœ‹/3)βˆ’sin⁑(πœ‹/2) ] =10[√3/2βˆ’1] =10 Γ—βˆš3/2βˆ’10 =5√3βˆ’10 Since √3 = 1.73, 5√3βˆ’10 is negative And, area cannot be negative ∴ Area BEC = πŸπŸŽβˆ’πŸ“βˆšπŸ‘ Therefore Area Required = Area ADB + Area BEC = (10βˆ’5√3)+(10βˆ’5√3) = 2 Γ—(10βˆ’5√3) = πŸπŸŽβˆ’πŸπŸŽβˆšπŸ‘ square unit

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo