This question is similar Chapter 4 Class 12 Determinants - Ex 4.2
Please check the question here


CBSE Class 12 Sample Paper for 2025 Boards
CBSE Class 12 Sample Paper for 2025 Boards
Last updated at Feb. 12, 2025 by Teachoo
Transcript
Question 6 If the points (𝑥_1,𝑦_1 ),(𝑥_2,𝑦_2 ) and (𝑥_1+𝑥_2,𝑦_1+𝑦_2 ) are collinear, then 𝑥_1 𝑦_2 is equal to (A) 𝑥_2 𝑦_1 (B) 𝑥_1 𝑦_1 (C) 𝑥_2 𝑦_2 (D) 𝑥_1 𝑥_2Three point are collinear if they lie on some line 𝑖.𝑒. They do not form a triangle ∴ Area of triangle = 0 We know that Area of triangle is given by ∆ = 1/2 |■8(x1&y1&1@x2&y2&1@x3&y3&1)| Here, x1 = x1, y1 = y1 x2 = x2, y2 = y2, x3 = x1 + x2, y3 = y1 + y2 Putting values ∆ = 1/2 |■8(𝑥_1&𝑦_1&1@𝑥_2&𝑦_2&1@𝑥_1+𝑥_2&𝑦_1+𝑦_2&1)| ∆ = 1/2[𝑥_1 (𝑦_2 × 1−(𝑦_1+𝑦_2 )× 1) − 𝑦_1 (𝑥_2 ×1 −(𝑥_1+𝑥_2 )×1) +1(𝑥_2 ×(𝑦_1+𝑦_2 )−(𝑥_1+𝑥_2 )×𝑦_2 ) ] ∆ = 1/2[𝑥_1 (𝑦_2 −𝑦_1−𝑦_2 ) − 𝑦_1 (𝑥_2 −𝑥_1−𝑥_2 ) + 1(𝑥_2 𝑦_1+𝑥_2 𝑦_2−𝑥_1 𝑦_2−𝑥_2 𝑦_2 ) ] ∆ = 1/2[−𝑥_1 𝑦_1+𝑥_1 𝑦_1+𝑥_2 𝑦_1−𝑥_1 𝑦_2] ∆ = 1/2[𝑥_2 𝑦_1−𝑥_1 𝑦_2] Putting Area of Triangle = ∆ = 0 0 = 1/2[𝑥_2 𝑦_1−𝑥_1 𝑦_2] 0 = 𝑥_2 𝑦_1−𝑥_1 𝑦_2 𝑥_1 𝑦_2=𝒙_𝟐 𝒚_𝟏 So, the correct answer is (A)