Ex 8.2, 6 - Find 13th term of (9x - 1/3 root x)18 - Class 11

Ex 8.2 6 - Chapter 8 Class 11 Binomial Theorem - Part 2

Go Ad-free

Transcript

Question 6 Find the 13th term in the expansion of ("9x – " 1/(3√x))^18 , x ≠ 0. We know that General term of expansion (a + b)n is Tr + 1 = nCr an – r br We need to calculate 13th term (i.e. T13 = T12+1 ) of expansion ("9x – " 1/(3√x))^18 Putting r = 12 , n = 18 , a = 9x & b = 1/(3√x) T12 + 1 = 18C12 (9x)18 – 12 ((−1)/(3√x))^12 = 18!/(12!(18 − 12)) (9x)6 × ((−1)/3)^12 (1/√x)^12 = 18!/(12! × 6!) 96 . x6 . (-1)12 . (1/3) 12 .(1/𝑥)^(1/2 " ×" 12) = (18 × 17 × 16 × 15 × 14 × 13 × 12!)/(12! ×(6 × 5 × 4 × 3 × 2 × 1)) . (32)6 . x6 . 1 . 1/312 . 1/𝑥6 = (18 × 17 × 16 × 15 × 14 × 13 )/((6 × 5 × 4 × 3 × 2 )) . 312 . x6 . 1/312 . 1/𝑥6 = (18 × 17 × 16 × 15 × 14 × 13 )/((6 × 5 × 4 × 3 × 2 )) . 312/312 . 𝑥6/𝑥6 = 18564 × 1 = 18564

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo