Slide41.JPG

Slide42.JPG
Slide43.JPG
Slide44.JPG

Go Ad-free

Transcript

Ex 7.1, 14 (Method 1) By Binomial Theorem, Putting b = 3 and a = 1 in the above equation Prove that ∑_(𝑟=0)^𝑛▒〖3^𝑟 nCr〗 ∑_(𝑟=0)^𝑛▒nCr 𝑎^(𝑛 − 𝑟) 𝑏^𝑟 ∑_(𝑟=0)^𝑛▒nCr 1^(𝑛−𝑟) 3^𝑟 Hence proved Ex 7.1, 14 (Method 2) – Introduction For r = 0, 3^0 nC0 For r = 1, 3^1 nC1 For r = 2, 3^2 nC2 For r = 3, 3^3 nC3 … …. For r = n, 3^𝑛 nCn nC0 30 + nC1 31 + nC2 32 + … ……… + nCn − 1 3n − 1 + nCn 3n Prove that = nC0 30 + nC1 31 + nC2 32 + ……………… + nCn-1 3n-1 + nCn 3n Ex 7.1, 14(Method 2) Solving L.H.S This is similar to nC0 an b0 + nC1 an-1 b1 + nC2 an-2 b2 + …… .+ nCn-1 a1 bn-1 + nCn a0 bn Where a = 1 , b = 3 And we know that (a + b)n = nC0 an b0 + nC1 an-1 b1 + …….+ nCn-1 a1 bn-1 + nCn a0 bn = (1 + 3)n = (4)n = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo