Slide21.JPG

Slide22.JPG

Go Ad-free

Transcript

Ex 7.1, 8 Using Binomial Theorem, evaluate (101)4 (101)4 = (100 + 1)4 We know that (a + b)n = nC0 an + nC1 an – 1 b1 + nC2 an – 2 b2 + ….…. + nCn – 1 a1 bn – 1 + nCn bn Hence, (a + b)4 = 4C0 a4 + 4C1 a3 b1 + 4C2 a2 b2 + 4C3 a1b3 + 4C4 b4 = 4!/0!(4 − 0)! a4 + 4!/(1 × (4 − 1)!) a3b1 + 4!/2!(4 − 2)! a2b2 + 4!/(3!(4 − 3)!) a3 b1 + 4!/4!(4 −4)! b4 = 4!/(1 × 4!) a4 + 4!/(1 × 3!) a3 b + 4!/(2! × 2!) a2 b2 + 4!/(3! × 1!) ab3 + 4!/(4! 0!) b4 = a4 + 4a3 b + 6a2 b2 + 4 ab3 + b4 Hence, (a + b)4 = a4 + 4a3 b + 6a2 b2 + 4 ab3 + b4 We need to find (100 + 1)4, Putting a = 100 & b = 1 (100 + 1)4 = (100)4 + 4 (100)3 (1) + 6 (100)2 (1)2 + 4 (100) (1)3+ (1)4 (101)4 = (100000000) + 4(1000000) + 6(10000) + 4(100) + 1 = 100000000 + 4000000 + 60000 + 400 = 104060401 So, (101)4 = 104060401

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo