Slide28.JPG

Slide29.JPG
Slide30.JPG
Slide31.JPG
Slide32.JPG

Go Ad-free

Transcript

Misc 7 In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions? Student is required to attempt total 8 questions & selecting atleast 3 question from part 1 & part 2 Atleast means minimum So, she can select Option 1 3 from Part 1 & 5 from Part 2 Option 2 4 from Part 1 & 4 from Part 2 Option 3 5 from Part 1 & 3 from Part 2 We have to calculate all these combinations separately and then add it Option 1 – 3 questions from Part 1 and 5 Questions from Part 2 Number of ways selecting = 5C3 × 7C5 = 5!/3!(5 − 3)! × 7!/5!(7 − 5)! = 5!/(3! 2!) × 7!/(5! 2!) = (5 × 4 × 3!)/(3! 2!) × (7 × 6 × 5!)/(5! 2!) = 5 × 2 × 7 × 3 = 210 Option 2 – 4 questions from Part 1 and 4 Questions from Part 2 Number of ways selecting = 5C4 × 7C4 = 5!/4!(5 − 4)! × 7!/4!(7 − 4)! = 5!/(4! 1!) × 7!/(4! 3!) = (5 × 4!)/4! × (7 × 6 × 5 × 4!)/(4! 3!) = 5 × 7 × 5 = 175 Option 3 – 5 questions from Part 1 and 3 Questions from Part 2 Number of ways selecting = 5C5 × 7C3 = 5!/5!(5 − 5)! × 7!/3!(7 − 3)! = 5!/(5! 0!) × 7!/(3! 4!) = 5!/5! × (7 × 6 × 5 × 4!)/(3! 4!) = 1 × 7 × 5 = 35 Hence, Total ways = 210 + 175 + 35 = 420 ways

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo