Slide30.JPG

Slide31.JPG

Slide32.JPG

Slide33.JPG

Slide34.JPG Slide35.JPG Slide36.JPG

 

 

Go Ad-free

Transcript

Ex 6.3, 9 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time, Total number of alphabets in MONDAY = 6 Hence n = 6 If 4 letters are used at a time, r = 4 Number of different words = nPr = 6P4 = (6! )/(6 − 4)! = 6!/2! = (6 × 5 × 4 × 3 × 2!)/2! = 6 × 5 × 4 × 3 = 360 Ex7.3, 9 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if (ii) all letters are used at a time, Total number of alphabets in MONDAY = 6 Hence n = 6 If all letters are used at a time, r = 6 Number of different words = nPr = 6P6 = (6! )/(6 − 6)! = 6!/0! = 6!/1 = 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720 Ex 6.3, 9 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if (iii) all letters are used but first letter is a vowel? First letter should be a vowel (a, e, i, o, u) Vowel in MONDAY are O and A Assuming first letter O If first letter is O, word will be of the form Number of letters left = 5 n = 5 Number of letters to be used = 5 r = 5 Number of different words = 5P5 = 5!/(5 − 5)! = 5!/0! = 5!/1 = 5! = 5 × 4 × 3 × 2 × 1 = 120 Similarly, If first letter is A , Number of different words = 120 Thus, Required number of words = 120 + 120 = 240

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo