Example 15 - (3 + 2i sin⁡)/(1 - 2isin) is purely real - Proof- Solving

Example 15 - Chapter 5 Class 11 Complex Numbers - Part 2
Example 15 - Chapter 5 Class 11 Complex Numbers - Part 3
Example 15 - Chapter 5 Class 11 Complex Numbers - Part 4

Go Ad-free

Transcript

Example, 15 Find real θ such that (3 + 2i sin⁡θ)/(1 − 2isin θ) is purely real Since (3 + 2i sin⁡θ)/(1 − 2isin θ) is purely real We need to first solve (3 + 2i sin⁡θ)/(1 − 2isin θ) and then take imaginary part as 0 (3 + 2i sin⁡θ)/(1 − 2isin θ) Rationalizing = (3 + 2i sin⁡θ)/(1 − 2isin θ) × (1 + 2isin θ)/(1 + 2isin θ) = ((3 + 2i sin⁡θ ) ( 1 + 2i sin⁡θ) )/(1 − 2i sin θ)(1 + 2i sin θ) = (3(1 + 2i sin⁡〖θ) + 2𝑖 sin⁡θ (1 + 2i sin θ") " 〗)/( 1 − 2i sin θ)(1 + 2i sin θ) = (3 + 6i sin⁡〖θ + 2𝑖 sin⁡θ + (2i sin θ)2" " 〗)/(1 − 2i sin θ)(1+ 2i sin θ) = (3 + 8i sin⁡〖θ + 4i2 sin2 θ" " 〗)/(1 − 2i sin θ)(1 + 2i sin θ) Using ( a – b ) ( a + b ) = a2 – b2 = (3 + 8i sin⁡〖θ + 4i2 sin2 θ" " 〗)/(12 −(2i sin θ)2) = (3 + 8i sin⁡〖θ + 4i2 sin2 θ" " 〗)/(1 − 4i2 sin2 θ) Putting i2 = − 1 = (3 + 8i sin⁡〖θ + 4(−1) sin2 θ" " 〗)/(1 − 4 (−1) sin2 θ) = (3 + 8i sin⁡〖θ − 4 sin2 θ" " 〗)/(1 + 4 sin2 θ) = (3 + 8i sin⁡〖θ − 4 sin2 θ" " 〗)/(1 + 4 sin2 θ) = (3 − 4 sin2 θ + 8i sin⁡〖θ 〗)/(1 + 4 sin2 θ) = (3 − 4 sin2 θ )/(1 + 4 sin2 θ) + 𝑖 ( 8 sin⁡〖θ 〗)/(1 + 4 sin2 θ) Hence, (3 + 2i sin⁡θ)/(1 − 2isin θ) = (3 − 4 sin2 θ )/(1 + 4 sin2 θ) + 𝑖 ( 8 sin⁡〖θ 〗)/(1 + 4 sin2 θ) Since (3 + 2i sin⁡θ)/(1 − 2isin θ) is purely real given Hence imaginary part of is equal to 0 i.e. ( 8 sin⁡〖θ 〗)/(1 + 4 sin2 θ) = 0 8 sin⁡θ= 0 ×(1 + 4 sin2⁡θ ) 8 sin θ = 0 sin θ = 0/8 sin⁡θ = 0 sin⁡θ = sin 0 Since sin θ = sin⁡𝑦 Then θ = n𝜋 ± y , where n ∈ Z Putting y = 0 θ = n𝜋 ± 0 θ = n𝜋 where n ∈ Z Hence for θ = n𝜋 ,where n ∈ Z (3 + 2𝑖 sin⁡𝜃)/(1 − 2𝑖 sin 𝜃) is purely real

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo