Mathematical Induction
Serial order wise

Slide46.JPG

Slide47.JPG
Slide48.JPG

 

Go Ad-free

Transcript

Prove 1 + 2 + 3 + ……. + n = (𝐧(𝐧+𝟏))/𝟐 for n, n is a natural number Step 1: Let P(n) : (the given statement) Let P(n): 1 + 2 + 3 + ……. + n = (n(n + 1))/2 Step 2: Prove for n = 1 For n = 1, L.H.S = 1 R.H.S = (𝑛(𝑛 + 1))/2 = (1(1 + 1))/2 = (1 × 2)/2 = 1 Since, L.H.S. = R.H.S ∴ P(n) is true for n = 1 Step 3: Assume P(k) to be true and then prove P(k + 1) is true Assume that P(k) is true, P(k): 1 + 2 + 3 + ……. + k = (𝑘(𝑘 + 1))/2 We will prove that P(k + 1) is true. P(k + 1): 1 + 2 + 3 +……. + (k + 1) = ((k + 1)( (k + 1) + 1))/2 P(k + 1): 1 + 2 + 3 +…….+ k + (k + 1) = ((𝐤 + 𝟏)(𝐤 + 𝟐))/𝟐 We have to prove P(k + 1) is true Solving LHS 1 + 2 + 3 +…….+ k + (k + 1) From (1): 1 + 2 + 3 + ……. + k = (𝑘(𝑘 + 1))/2 = (𝒌(𝒌 + 𝟏))/𝟐 + (k + 1) = (𝑘(𝑘 + 1) + 2(𝑘 + 1))/2 = ((𝒌 + 𝟏)(𝒌 + 𝟐))/𝟐 = RHS ∴ P(k + 1) is true when P(k) is true Step 4: Write the following line Thus, By the principle of mathematical induction, P(n) is true for n, where n is a natural number

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo