Mathematical Induction - Questions and Solutions
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9
Question 10
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16 Important
Question 17 Important
Question 18 Important
Question 19
Question 20
Question 21 Important
Question 22 You are here
Question 23 Important
Question 24 Important
Last updated at April 16, 2024 by Teachoo
Question22 Prove the following by using the principle of mathematical induction for all n N: 32n + 2 8n 9 is divisible by 8. Introduction If a number is divisible by 8, 16 = 8 2 24 = 8 3 64 = 8 8 Any number divisible by 8 = 8 Natural number Question22 Prove the following by using the principle of mathematical induction for all n N: 32n + 2 8n 9 is divisible by 8. Let P(n): 32n + 2 8n 9 =8d where d N i.e. d is a natural number For n = 1, L.H.S = 32 1 + 2 8 1 9 = 32+2 8 9 = 34 17 = 81 17 = 64 = 8 8 = R.H.S P(n) is true for n = 1 Assume P(k) is true 32k + 2 8k 9 = 8m; where m N We will prove that P(k + 1) is true. L.H.S = 32(k+1)+2 8(k+1) 9 = 32k+2 + 2 8k 8 - 9 = 32k+2. 32 8k 8 - 9 = 9 (32k+2) 8k 17 = 9 (8k + 9 + 8m) 8k 17 = 9 8k + 9 9 + 9 8m 8k 17 = 9 8k + 81 + 9 8m 8k 17 = 9 8k 8k + 81 17 + 9 8m = 9 8k 8k + 64 + 9 8m = 8k (9 1) + 64 + 9 8m = 8k 8 + 64 + 9 8m = 8k 8 + 8 8 + 9 8m = 8 (8k + 8 + 9m ) = 8r, where r =(9m + 8k + 8) is a natural number P(k + 1) is true whenever P(k) is true. By the principle of mathematical induction, P(n) is true for n, where n is a natural number