Ex 4.1, 19 - Prove: n (n + 1) (n + 5) is a multiple of 3 - Ex 4.1

Ex 4.1, 19 - Chapter 4 Class 11 Mathematical Induction - Part 2

Ex 4.1, 19 - Chapter 4 Class 11 Mathematical Induction - Part 3
Ex 4.1, 19 - Chapter 4 Class 11 Mathematical Induction - Part 4
Ex 4.1, 19 - Chapter 4 Class 11 Mathematical Induction - Part 5

Go Ad-free

Transcript

Question19 Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3. Introduction If a number is multiple of 3, then it will come in table of 3 3 × 1 = 3 3 × 2 = 6 3 × 3 = 9 Any number multiple of 3 = 3 × Natural number Question19 Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3. Let P(n): n (n + 1) (n + 5) = 3d, where d ∈ N For n = 1 , L.H.S = 1 (1 + 1) (1 + 5) = 1.(2).(6) = 12 = (3) × 4 = R.H.S , ∴P(n) is true for n = 1 Assume P(k) is true k (k + 1) (k + 5) = 3m , where m ∈ N ((k(k + 1)) (k + 5)= 3m (k2 + k) (k + 5) = 3m k2(k + 5) + k(k + 5) = 3m k3 + 5k2 + k2 + 5k =3m k3 + 6k2 + 5k =3m We will prove that P(k + 1) is true L.H.S = (k+1) ((k+1)+1) ((k+1)+5) = (k+1) (k+2) (k+6) = ((k + 1) (k + 2)) (k + 6) = ( k(k + 2) + 1(k + 2)) (k + 6) = ( k2 + 2k + k + 2) (k + 6) = (k + 6) ( k2 + 3k +2) = k (k2 + 3k +2) + 6 (k2 + 3k +2) = k3 + 3k2 +2k + 6k2 + 6 × 3k + 6 × 2 = k3 + 3k2 +2k + 6k2 + 18k + 12 = k3 + 9k2 + 20k +12 = (3m – 6k2 – 5k ) + 9k2 + 20k +12 = 3m – 6k2 + 9k2 – 5k + 20k +12 = 3m + 3k2 + 15k + 12 = 3 (m + k2 + 5k + 4) = 3 r , where r = m + k2 + 5k +4 r is a natural number ∴ P(k + 1) is true whenever P(k) is true. ∴ By the principle of mathematical induction, P(n) is true for n, where n is a natural number

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo