Slide38.JPG

Slide39.JPG
Slide40.JPG
Slide41.JPG

Go Ad-free

Transcript

Question 1 Prove the following by using the principle of mathematical induction for all n ∈ N: 1 + 3 + 32+……+ 3n – 1 = ((3𝑛 − 1))/2 Let P(n) : 1 + 3 + 32+……+ 3n – 1 = ((3𝑛 − 1))/2 Proving for n = 1 For n = 1, L.H.S = 1 R.H.S = ((3^1 − 1))/2 = ((3 − 1))/2 = ((2))/2 = 1 Since, L.H.S. = R.H.S ∴ P(n) is true for n = 1 Proving P(k + 1) is true if P(k) is true Assume that P(k) is true, P(k): 1 + 3 + 32 +…..+ 3k – 1 = ((3𝑘 − 1))/2 We will prove that P(k + 1) is true. P(k + 1): 1 + 3 + 32 +…..+ 3(k + 1) – 1 = ((3^(𝑘+1) − 1))/2 P(k + 1): 1 + 3 + 32 +…..3(k – 1) + 3(k) = ((3^(𝑘+1) − 1))/2 We have to prove P(k + 1) is true Solving LHS 1 + 3 + 32 +…..+ 3k – 1 + 3k From (1): 1 + 3 + 32 +…..+ 3k – 1 = ((𝟑𝒌 − 𝟏))/𝟐 = ((𝟑𝒌 − 𝟏))/𝟐 + 3k = ((3𝑘 − 1) + 2 × 3^𝑘)/2 = (𝟑𝒌 + 𝟐 × 𝟑^𝒌 − 𝟏)/𝟐 = ( 3(3^𝑘 )− 1)/2 = (𝟑^(𝒌 + 𝟏) − 𝟏)/𝟐 = RHS ∴ P(k + 1) is true when P(k) is true Thus, By the principle of mathematical induction, P(n) is true for n, where n is a natural number

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo