Slide38.JPG

Slide39.JPG
Slide40.JPG
Slide41.JPG
Slide42.JPG Slide43.JPG Slide44.JPG Slide45.JPG Slide46.JPG Slide47.JPG Slide48.JPG Slide49.JPG Slide50.JPG Slide51.JPG

Go Ad-free

Transcript

Misc 10 Find sin π‘₯/2, cos π‘₯/2 and tan π‘₯/2 for sin⁑π‘₯ = 1/4 , π‘₯ in quadrant II Given that x is in Quadrant II So, 90Β° < x < 180Β° Replacing x with π‘₯/2 (90Β°)/2 < π‘₯/2 < (180Β°)/2 45Β° < 𝒙/𝟐 < 90Β° So, 𝒙/𝟐 lies in Ist quadrant In Ist quadrant, sin , cos & tan are positive sin π‘₯/2 , cos π‘₯/2 and tan π‘₯/2 are positive Given sin x = 1/4 2 sin 𝒙/𝟐 cos 𝒙/𝟐 = 𝟏/πŸ’ sin π‘₯/2 cos π‘₯/2 = 1/4 Γ— 1/2 sin 𝒙/𝟐 cos 𝒙/𝟐 = 𝟏/πŸ– We are given sin x , lets first calculate cos x We know that sin2 x + cos2 x = 1 (1/4)^2 + cos2 x = 1 1/16 + cos2 x = 1 cos2 x = 1 – 1/16 cos2 x = (16 βˆ’ 1)/16 cos2 x = 15/16 cos x = ±√(15/16) cos x = Β± βˆšπŸπŸ“/πŸ’ Given that x is in llnd Quadrant So cos x is negative ∴ cos x = (βˆ’βˆšπŸπŸ“)/πŸ’ We know that cos 2x = 2cos2 x – 1 Replacing x by π‘₯/2 cos x = 2 cos2 π‘₯/2 – 1 2cos2 π‘₯/2 – 1 = βˆ’βˆš15/4 2cos2 π‘₯/2 = (4 βˆ’ √15)/4 cos2 π‘₯/2 = (4 βˆ’ √15)/4 Γ— 1/2 cos2 π‘₯/2 = (4 βˆ’ √15)/(4 Γ— 2) cos2 π‘₯/2 = (4 βˆ’ √15)/8 cos π‘₯/2 = Β± √((4 βˆ’ √15)/8) = Β± √((4 βˆ’ √15)/8Γ— 2/2) = Β± √((2(4 βˆ’ √15))/16) = Β± √((8 βˆ’2√15))/4 Since π‘₯/2 lie on the lst Quadrant, cos 𝒙/𝟐 is positive in the lst Quadrant So, cos π‘₯/2 = √((8 βˆ’2√15))/4 So, cos 𝒙/𝟐 = √((πŸ– βˆ’πŸβˆšπŸπŸ“))/πŸ’ Also, from (1) sin π‘₯/2 cos π‘₯/2 = 1/8 Putting value of cos π‘₯/2 "sin " π‘₯/2 Γ— √((8 βˆ’2√15))/4 = 1/8 "sin " π‘₯/2 = 1/8 Γ— 4/√((8 βˆ’2√15)) "sin " π‘₯/2 = 1/2 Γ— 1/√((8 βˆ’2√15)) "sin " π‘₯/2 = 1/2 Γ— 1/√((8 βˆ’2√15) Γ— ((8 + 2√15))/((8 + 2√15) )) "sin " π‘₯/2 = 1/2 Γ— 1/√( ((8 βˆ’2√15) Γ— (8 + 2√15))/((8 + 2√15) )) "sin " π‘₯/2 Γ— √((8 βˆ’2√15))/4 = 1/8 "sin " π‘₯/2 = 1/8 Γ— 4/√((8 βˆ’2√15)) "sin " 𝒙/𝟐 = 1/2 Γ— 1/√((8 βˆ’2√15)) = 1/2 Γ— √(((8 + 2√15))/((64 βˆ’ (2)2 (√15)2 )) = 1/2 Γ— √(((8 + 2√15))/((64 βˆ’ 4 Γ— 15) )) = 1/2 Γ— √(((8 + 2√15))/((64 βˆ’ 4 Γ— 15) )) = 1/2 Γ— √(((8 + 2√15))/((64 βˆ’ 60) )) = 1/2 Γ— √(((8 + 2√15))/4) = 1/2 Γ— √((8 + 2√15) )/√4 = 1/2 Γ— √((8 + 2√15) )/2 = √((8 + 2√15) )/4 ∴ sin 𝒙/𝟐 = √((πŸ– + πŸβˆšπŸπŸ“) )/πŸ’ We know that tan x = sin⁑π‘₯/π‘π‘œπ‘ β‘π‘₯ Replacing x with π‘₯/2 tan 𝒙/𝟐 = π’”π’Šπ’β‘γ€– 𝒙/πŸγ€—/〖𝒄𝒐𝒔 〗⁑〖𝒙/πŸγ€— = (√((8 + 2√15) )/4)/(√((8 βˆ’2√15))/4) = √((8 + 2√15) )/√((8 βˆ’ 2√15) ) = √(((8 + 2√15))/((8 βˆ’ 2√15) )Γ—((8 + 2√15))/((8 + 2√15) )) = √((8 + 2√15)2/(8 βˆ’ 2√15)(8 + 2√15) ) = √(((8 + 2√15))/((8 βˆ’ 2√15) )Γ—((8 + 2√15))/((8 + 2√15) )) = √((8 + 2√15)2/(8 βˆ’ 2√15)(8 + 2√15) ) = √((8 + 2√15)2/((82 βˆ’(2√15)2) )) = √((8 + 2√15)2/((64 βˆ’ (4 Γ— 15)) )) = √((8 + 2√15)2/((64 βˆ’ 60) )) = √((8 + 2√15)2/4) = √((8 + 2√15)2/22) = √((((8 + 2√15))/2)^2 ) = √((((8 + 2√15))/2)^2 ) = ((πŸ– + πŸβˆšπŸπŸ“))/𝟐 = 2(4 + √15)/2 \ Hence, tan 𝒙/𝟐 = (πŸ’ + βˆšπŸπŸ“)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo