Slide13.JPG

Slide14.JPG
Slide15.JPG

Go Ad-free

Transcript

Misc 6 Prove that ((sin⁑〖7π‘₯ + sin⁑〖5π‘₯) + (sin⁑〖9π‘₯ + sin⁑〖3π‘₯)γ€— γ€— γ€— γ€—)/((cos⁑〖7π‘₯ + π‘π‘œπ‘  5π‘₯) + (cos⁑〖9π‘₯ + cos⁑〖3π‘₯)γ€— γ€— γ€— ) = tan 6x Solving L.H.S ((sin⁑〖7π‘₯ + sin⁑〖5π‘₯) + (sin⁑〖9π‘₯ + sin⁑〖3π‘₯)γ€— γ€— γ€— γ€—)/((cos⁑〖7π‘₯ + π‘π‘œπ‘  5π‘₯) + (cos⁑〖9π‘₯ + cos⁑〖3π‘₯)γ€— γ€— γ€— ) Lets solve numerator and Denominator separately Solving numerator (sin 7x + sin 5x) + ( sin 9x + sin 3x) = 2 sin ((7π‘₯ + 5π‘₯)/2) cos ((7π‘₯ βˆ’ 5π‘₯)/2) + 2sin ((9π‘₯ +3π‘₯)/2) cos ((9π‘₯ βˆ’3π‘₯)/2) = 2 sin (12π‘₯/2) . cos (2π‘₯/2) + 2sin (12π‘₯/2) cos (6π‘₯/2) = 2 sin 6x . cos x + 2 sin 6x . cos 3x = 2 sin 6x (cos x + cos 3x) Now solving Denominator (cos 7x + cos 5x) + (cos 9x + cos 3x) = 2 cos ((7π‘₯ + 5π‘₯)/2) cos ((7π‘₯ βˆ’ 5π‘₯)/2) + 2 cos ((9π‘₯ +3π‘₯)/2) cos ((9π‘₯ βˆ’3π‘₯)/2) = 2 cos (12π‘₯/2) . cos (2π‘₯/2) + 2 cos (12π‘₯/2) cos (6π‘₯/2) = 2 cos 6x . cos x + 2 cos 6x . cos 3x = 2 cos 6x (cos x + cos 3x) Now solving L.H.S ((sin⁑〖7π‘₯ + sin⁑〖5π‘₯) + (sin⁑〖9π‘₯ + sin⁑〖3π‘₯)γ€— γ€— γ€— γ€—)/((cos⁑〖7π‘₯ + π‘π‘œπ‘  5π‘₯) + (cos⁑〖9π‘₯ + cos⁑〖3π‘₯)γ€— γ€— γ€— ) = (𝟐 π’”π’Šπ’β‘πŸ”π’™ (𝒄𝒐𝒔⁑𝒙 + π’„π’π’”β‘πŸ‘π’™))/(𝟐 π’„π’π’”β‘πŸ”π’™ (𝒄𝒐𝒔⁑𝒙 + π’„π’π’”β‘πŸ‘π’™)) = (sin⁑6π‘₯ )/(cos⁑6π‘₯ ) = tan 6x = R.H.S Hence L.H.S = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo