An aeroplane is flying along the line r =λ( i  ˆ - j  ˆ + k  ˆ ); where ' λ ' is a scalar and another aeroplane is flying along the line r =i ˆ-j ˆ+μ(-2j ˆ+ k  ˆ ); where ' μ ' is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.

-lock-

This question is similar to Question-34-Choice-1 CBSE-Class-12-Sample-Paper-for-2023-Boards

Slide16.JPG Slide17.JPG Slide18.JPG Slide19.JPG Slide20.JPG Slide21.JPG Slide22.JPG

-endlock-

You saved atleast 2 minutes of distracting ads by going ad-free. Thank you :)

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

ο»ΏThe given lines are non-parallel lines. Let Shortest distance = |(𝑃𝑄) βƒ— | Since (𝑃𝑄) βƒ— is shortest distance, (𝑃𝑄) βƒ— βŠ₯ Line 1 (𝑃𝑄) βƒ— βŠ₯ Line 2 Point P Since point P lies on Line 1 Position vector of P = πœ†(𝑖 Λ†βˆ’π‘— Λ†+π‘˜ Λ†) = (πœ†) 𝑖 Μ‚+(βˆ’πœ†)𝑗 Μ‚+(πœ†)π‘˜ Μ‚ Now, (𝑷𝑸) βƒ— = Position vector of Q βˆ’ Position vector of P = [𝑖 Μ‚+(βˆ’1βˆ’2πœ‡)𝑗 Λ†+(πœ‡)π‘˜ Μ‚ ]βˆ’[(πœ†) 𝑖 Μ‚+(βˆ’πœ†)𝑗 Μ‚+(πœ†)π‘˜ Μ‚] = ο»Ώ(1 βˆ’ πœ†)πš€Μ‚ + (βˆ’ 1 βˆ’ 2πœ‡ + πœ†)πš₯Μ‚ + (πœ‡ βˆ’ πœ†)π‘˜ Μ‚ Now, (𝑷𝑸) βƒ— βŠ₯ Line 1 (π‘Ÿ βƒ— = πœ†(𝑖 Λ†βˆ’π‘— Λ†+π‘˜ Λ†) ) Thus, (𝑃𝑄) βƒ— βŠ₯ (𝑖 Μ‚βˆ’π‘— Μ‚+π‘˜ Μ‚ ) And (𝑷𝑸) βƒ— . (π’Š Μ‚βˆ’π’‹ Μ‚+π’Œ Μ‚ )=𝟎 ο»Ώ(1 βˆ’ πœ†)πš€Μ‚ + (βˆ’ 1 βˆ’ 2πœ‡ + πœ†)πš₯Μ‚ + (πœ‡ βˆ’ πœ†)π‘˜ Μ‚. (π’Š Μ‚βˆ’π’‹ Μ‚+π’Œ Μ‚ )=𝟎 (1βˆ’ πœ†)1 + (βˆ’1 βˆ’2πœ‡ + πœ†)(βˆ’1) + (πœ‡ βˆ’ πœ†)1 = 0 (1βˆ’ πœ†) + (1 + 2πœ‡ - πœ†) + (πœ‡ βˆ’ πœ†) = 0 (1 + 1) + (βˆ’ πœ† βˆ’ πœ† βˆ’ πœ†) + (2πœ‡ + πœ‡) = 0 2 βˆ’ 3πœ† + 3πœ‡ = 0 3πœ‡ βˆ’ 3πœ† = βˆ’ 2 Similarly (𝑷𝑸) βƒ— βŠ₯ Line 2 (π‘Ÿ βƒ— = 𝑖 Λ†βˆ’π‘— Λ†+πœ‡(βˆ’2𝑗 Λ†+π‘˜ Λ†)) Thus, (𝑃𝑄) βƒ— βŠ₯(βˆ’2𝑗 Λ†+π‘˜ Λ†) And (𝑷𝑸) βƒ— .(βˆ’2𝑗 Λ†+π‘˜ Λ†)=𝟎 (1 βˆ’ πœ†)πš€Μ‚ + (βˆ’ 1 βˆ’ 2πœ‡ + πœ†)πš₯Μ‚ + (πœ‡ βˆ’ πœ†)π‘˜ Μ‚.(βˆ’2𝑗 Λ†+π‘˜ Λ† )=0 (1 βˆ’ πœ†)(0) + (βˆ’ 1 βˆ’ 2πœ‡ + πœ†)(βˆ’2) + (πœ‡ βˆ’ πœ†)(1) = 0 0 + (2 +4πœ‡ βˆ’ 2πœ†) + (πœ‡ βˆ’ πœ†) = 0 (2) + (βˆ’2πœ† βˆ’ πœ†) + (4πœ‡ + πœ‡) = 0 2 βˆ’ 3πœ† + 5πœ‡ = 0 5πœ‡ βˆ’ 3πœ† = βˆ’2 Thus, our equations are 3πœ‡ βˆ’ 3πœ† = βˆ’2 …(1) 5πœ‡ βˆ’ 3πœ† = βˆ’2 …(2) Solving (1) and (2) We get πœ‡ = 0, πœ† = 𝟐/πŸ‘ Point P Position vector of P = (πœ†) 𝑖 Μ‚+(βˆ’πœ†)𝑗 Μ‚+(πœ†)π‘˜ Μ‚ Putting πœ† = 𝟐/πŸ‘ = 𝟐/πŸ‘ π’Š Μ‚βˆ’πŸ/πŸ‘ 𝒋 Μ‚+ 𝟐/πŸ‘ π’Œ Μ‚ Point Q Position vector of Q = 𝑖 Μ‚+(βˆ’1βˆ’2πœ‡)𝑗 Λ†+(πœ‡)π‘˜ Μ‚ Putting πœ‡ = 0 =( 𝑖) Μ‚+(βˆ’1 βˆ’0) 𝑗 Μ‚+(0)π‘˜ Μ‚ = π’Š Μ‚βˆ’π’‹ Μ‚ Now, (𝑷𝑸) βƒ— = Position vector of Q βˆ’ Position vector of P =[ π’Š Μ‚βˆ’(𝒋]) Μ‚βˆ’[ 𝟐/πŸ‘ π’Š Μ‚βˆ’πŸ/πŸ‘ 𝒋 Μ‚+ 𝟐/πŸ‘ π’Œ Μ‚] = 𝟏/πŸ‘ π’Š Μ‚βˆ’(𝟏 )/πŸ‘ 𝒋 Μ‚βˆ’πŸ/πŸ‘ π’Œ Μ‚ And, Shortest distance = |(𝑃𝑄) βƒ— | = √((1/3)^2+(βˆ’1/3)^2+(2/3)^2 ) =√( 1/9+1/9 +4/9) = √(6/9) = √(𝟐/πŸ‘) units

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo