Find : ∫(2x^2+3)/(x^2 (x^2+9) ) dx;x≠0

This question is similar to Ex 7.5, 18 Chapter 7 Class 12

Slide5.JPG

Slide6.JPG
Slide7.JPG
Slide8.JPG

Go Ad-free

Transcript

(2๐‘ฅ^2 + 3)/(๐‘ฅ^2 (๐‘ฅ^2 + 9) ) Let t = ๐’™^๐Ÿ = (2๐‘ก + 3)/๐‘ก(๐‘ก + 9) We can write (2๐‘ก + 3)/๐‘ก(๐‘ก + 9) = ๐‘จ/๐’• + ๐‘ฉ/((๐’• + ๐Ÿ—) ) (2๐‘ก + 3)/๐‘ก(๐‘ก + 9) = (๐ด(๐‘ก + 9) +๐ต๐‘ก)/(๐‘ก(๐‘ก + 9) ) Cancelling denominator ๐Ÿ๐’•+๐Ÿ‘ = ๐‘จ(๐’•+๐Ÿ—)+๐‘ฉ๐’• Putting t = โˆ’๐Ÿ— in (1) 2(โˆ’9)+3 = ๐ด(โˆ’9+9)+๐ต(โˆ’9) โˆ’18+3 = ๐ดร—0+๐ต(โˆ’9) โˆ’15 = 0+๐ต(โˆ’9) โˆ’15 = โˆ’9๐ต B = 15/9 ๐‘ฉ = ๐Ÿ“/๐Ÿ‘ Putting t = ๐ŸŽ in (1) 2(0)+3 = ๐ด(0+9)+๐ต(0) 3 = 9๐ด+0 A = 9/3 A = ๐Ÿ/๐Ÿ‘ Hence we can write (2๐‘ก + 3)/๐‘ก(๐‘ก + 9) = (1/3)/๐‘ก + (5/3)/((๐‘ก + 9 ) ) (2๐‘ก + 3)/๐‘ก(๐‘ก + 9) = 1/3๐‘ก + 5/(3(๐‘ก + 9)) Putting back t = ๐’™^๐Ÿ (๐Ÿ๐’™^๐Ÿ+ ๐Ÿ‘)/(๐’™^๐Ÿ (๐’™^๐Ÿ + ๐Ÿ—) ) = ๐Ÿ/(๐Ÿ‘๐’™^๐Ÿ ) + ๐Ÿ“/(๐Ÿ‘(๐’™^(๐Ÿ )+ ๐Ÿ—)) Therefore, โˆซ1โ–’(2๐‘ฅ^2 + 3)/(๐‘ฅ^2 (๐‘ฅ^2 +9)) ๐‘‘๐‘ฅ = โˆซ1โ–’ใ€–1/(3๐‘ฅ^2 ) ๐‘‘๐‘ฅ"+ " โˆซ1โ–’5/(3(๐‘ฅ^2+ 9))ใ€— ๐‘‘๐‘ฅ = 1/3 โˆซ1โ–’ใ€–1/๐‘ฅ^2 ๐‘‘๐‘ฅ" + " 5/3 โˆซ1โ–’1/((๐‘ฅ^2+ 9))ใ€— ๐‘‘๐‘ฅ = ๐Ÿ/๐Ÿ‘ โˆซ1โ–’ใ€–๐Ÿ/๐’™^๐Ÿ ๐’…๐’™" + " ๐Ÿ“/๐Ÿ‘ โˆซ1โ–’๐Ÿ/((๐’™^๐Ÿ+ ใ€–(๐Ÿ‘)ใ€—^๐Ÿ))ใ€— ๐’…๐’™ = 1/3 ร— (โˆ’๐Ÿ)/๐’™ + 5/3 ร— ๐Ÿ/๐Ÿ‘ ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ)โกใ€– ๐’™/๐Ÿ‘ใ€— + C = (โˆ’๐Ÿ)/๐Ÿ‘๐’™ + ๐Ÿ“/๐Ÿ— ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) (๐’™/๐Ÿ‘) + C

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo