If f(x)=1/(4x^2 + 2x + 1);x∈R, then find the maximum value of f(x).




CBSE Class 12 Sample Paper for 2024 Boards
CBSE Class 12 Sample Paper for 2024 Boards
Last updated at Feb. 10, 2025 by Teachoo
Transcript
f(đĽ)=1/(4đĽ^2 + 2đĽ + 1) Finding fâ(đ) fâ(đĽ)= ((1)^Ⲡ" " (4đĽ^2 + 2đĽ + 1)" â " (ă4đĽ^2 + 2đĽ + 1)ă^Ⲡ(1))/((ă4đĽ^2 + 2đĽ + 1)ă^2 ) fâ(đĽ)= (0 (4đĽ^2 + 2đĽ + 1)" â " (8đĽ + 2)(1))/((ă4đĽ^2 + 2đĽ + 1)ă^2 ) fâ(đĽ)= ("â" (8đĽ + 2) )/((ă4đĽ^2 + 2đĽ + 1)ă^2 ) Putting fâ(đ)=đ ("â" (8đĽ + 2) )/((ă4đĽ^2 + 2đĽ + 1)ă^2 ) = 0 -(8x + 2) = 0 8x + 2 = 0 8x = -2 â(8x + 2) = 0 8x + 2 = 0 8x = â2 x = (â2)/8 x = (âđ)/đ Finding fââ(đ) fâ(đĽ)=("â" (8đĽ + 2) )/((ă4đĽ^2 + 2đĽ + 1)ă^2 ) " " Differentiating again w.r.t x fââ(x) =â((8đĽ + 2)^Ⲡ(ă4đĽ^2 + 2đĽ + 1)ă^2â((ă4đĽ^2+2đĽ+1)ă^2 )^Ⲡ(8đĽ + 2))/(((ă4đĽ^2 + 2đĽ + 1)ă^2 )^2 ) fââ(x) =â(8(ă4đĽ^2 + 2đĽ + 1)ă^2 â 2(4đĽ^2 + 2đĽ + 1)(8đĽ + 2)(8đĽ + 2))/(4đĽ^2 + 2đĽ + 1)^4 fââ(x) =â(8(ă4đĽ^2 + 2đĽ + 1)ă^2 â 2(4đĽ^2 + 2đĽ + 1)(8đĽ + 2)(8đĽ + 2))/(4đĽ^2 + 2đĽ + 1)^4 fââ(x) =â(8(ă4đĽ^2 + 2đĽ + 1)ă^2 â 2(4đĽ^2 + 2đĽ + 1) (8đĽ + 2)^2)/(4đĽ^2 + 2đĽ + 1)^4 fââ (âđ/đ) = â(8(ă4(â1/4)^2+ 2(â1/4) + 1)ă^2 â 2(4(â1/4)^2+ 2(â1/4)+ 1) (8(â1/4)+ 2)^2)/(4(â1/4)^2+ 2(â1/4)+ 1)^4 fââ (âđ/đ) = â(8(ă4(â1/4)^2+ 2(â1/4) + 1)ă^2 â 2(4(â1/4)^2+ 2(â1/4)+ 1) (â2 + 2)^2)/(4(â1/4)^2+ 2(â1/4)+ 1)^4 fââ (âđ/đ) = â(8(3/4)^2â0)/(3/4)^4 = â8/(3/4)^2 fââ (âđ/đ) < 0 Since fââ (âđ/đ) < 0 , đĽ = âđ/đ is point of local maxima Putting đĽ = âđ/đ , we can calculate maximum value f(đĽ) =1/(4đĽ^2+2đĽ+1) f(âđ/đ)=1/(4(â1/4)^2+ 2(â1/4)+ 1) =1/(4(1/16)+ 2(â1/4)+ 1) =1/(1/4 â 2/4+ 1) = 4/(1 â2+ 4) = đ/đ