If f(x)=1/(4x^2  + 2x + 1);x∈R, then find the maximum value of f(x).

Slide4.JPG

Slide5.JPG
Slide6.JPG
Slide7.JPG
Slide8.JPG

Go Ad-free

Transcript

f(𝑥)=1/(4𝑥^2 + 2𝑥 + 1) Finding f’(𝒙) f’(𝑥)= ((1)^′ " " (4𝑥^2 + 2𝑥 + 1)" − " (〖4𝑥^2 + 2𝑥 + 1)〗^′ (1))/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) f’(𝑥)= (0 (4𝑥^2 + 2𝑥 + 1)" − " (8𝑥 + 2)(1))/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) f’(𝑥)= ("−" (8𝑥 + 2) )/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) Putting f’(𝒙)=𝟎 ("−" (8𝑥 + 2) )/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) = 0 -(8x + 2) = 0 8x + 2 = 0 8x = -2 −(8x + 2) = 0 8x + 2 = 0 8x = −2 x = (−2)/8 x = (−𝟏)/𝟒 Finding f’’(𝒙) f’(𝑥)=("−" (8𝑥 + 2) )/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) " " Differentiating again w.r.t x f’’(x) =−((8𝑥 + 2)^′ (〖4𝑥^2 + 2𝑥 + 1)〗^2−((〖4𝑥^2+2𝑥+1)〗^2 )^′ (8𝑥 + 2))/(((〖4𝑥^2 + 2𝑥 + 1)〗^2 )^2 ) f’’(x) =−(8(〖4𝑥^2 + 2𝑥 + 1)〗^2 − 2(4𝑥^2 + 2𝑥 + 1)(8𝑥 + 2)(8𝑥 + 2))/(4𝑥^2 + 2𝑥 + 1)^4 f’’(x) =−(8(〖4𝑥^2 + 2𝑥 + 1)〗^2 − 2(4𝑥^2 + 2𝑥 + 1)(8𝑥 + 2)(8𝑥 + 2))/(4𝑥^2 + 2𝑥 + 1)^4 f’’(x) =−(8(〖4𝑥^2 + 2𝑥 + 1)〗^2 − 2(4𝑥^2 + 2𝑥 + 1) (8𝑥 + 2)^2)/(4𝑥^2 + 2𝑥 + 1)^4 f’’ (−𝟏/𝟒) = −(8(〖4(−1/4)^2+ 2(−1/4) + 1)〗^2 − 2(4(−1/4)^2+ 2(−1/4)+ 1) (8(−1/4)+ 2)^2)/(4(−1/4)^2+ 2(−1/4)+ 1)^4 f’’ (−𝟏/𝟒) = −(8(〖4(−1/4)^2+ 2(−1/4) + 1)〗^2 − 2(4(−1/4)^2+ 2(−1/4)+ 1) (−2 + 2)^2)/(4(−1/4)^2+ 2(−1/4)+ 1)^4 f’’ (−𝟏/𝟒) = −(8(3/4)^2−0)/(3/4)^4 = −8/(3/4)^2 f’’ (−𝟏/𝟒) < 0 Since f’’ (−𝟏/𝟒) < 0 , 𝑥 = −𝟏/𝟒 is point of local maxima Putting 𝑥 = −𝟏/𝟒 , we can calculate maximum value f(𝑥) =1/(4𝑥^2+2𝑥+1) f(−𝟏/𝟒)=1/(4(−1/4)^2+ 2(−1/4)+ 1) =1/(4(1/16)+ 2(−1/4)+ 1) =1/(1/4 − 2/4+ 1) = 4/(1 −2+ 4) = 𝟒/𝟑

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo