The set of all points where the function f(x)=x+|x| is differentiable, is
(a) (0,∞) (b) (-∞,0)
(c) (-∞,0)∪(0,∞) (d) (-∞,∞)
This question is similar to Question-15 NCERT-Exemplar-MCQs


CBSE Class 12 Sample Paper for 2024 Boards
CBSE Class 12 Sample Paper for 2024 Boards
Last updated at Feb. 10, 2025 by Teachoo
This question is similar to Question-15 NCERT-Exemplar-MCQs
Transcript
๐(๐ฅ) = ๐ฅ+|๐ฅ| = {โ(๐ฅ+๐ฅ, ๐ฅโฅ0@๐ฅโ๐ฅ, ๐ฅ <0)โค = {โ(2๐ฅ, ๐ฅโฅ0@0, ๐ฅ<0)โค Now, f(x) is a differentiable at x = 0 if LHD = RHD (๐๐๐)โฌ(๐กโ๐) (๐(๐) โ ๐(๐ โ ๐))/๐ = (๐๐๐)โฌ(hโ0) (๐(0) โ ๐(0 โ โ))/โ = (๐๐๐)โฌ(๐กโ๐) (๐(๐) โ ๐(โ๐))/๐ =(๐๐๐)โฌ(โโ0) (2(0) โ 0)/โ = (๐๐๐)โฌ(hโ0) 0/โ = ๐ (๐๐๐)โฌ(๐กโ๐) (๐(๐ + ๐) โ ๐(๐ ))/๐ = (๐๐๐)โฌ(hโ0) (๐(0 + โ) โ ๐(0))/โ = (๐๐๐)โฌ(๐กโ๐) (๐(๐) โ ๐(๐))/๐ = (๐๐๐)โฌ(hโ0) (2โ โ 0)/โ = (๐๐๐)โฌ(hโ0) 2โ/โ = ๐ Hence, we can say that f(x) is differentiable on R โ {๐} or (โโ,๐)โช(๐,โ) So, the correct answer is (c)