Slide55.JPG

Slide56.JPG
Slide57.JPG
Slide58.JPG
Slide59.JPG Slide60.JPG Slide61.JPG Slide62.JPG Slide63.JPG

Go Ad-free

Transcript

Example 21 If tan⁑π‘₯ = 3/4 , "Ο€" < π‘₯ < 3πœ‹/4 , find the value of sin π‘₯/2 , cos π‘₯/2 and tan π‘₯/2 Given that "Ο€" < x < πŸ‘π…/𝟐 180Β° < x < 3/2 Γ— 180Β° 180Β° < x < 270Β° Dividing by 2 all sides (180Β°)/2 < π‘₯/2 < (270Β°)/2 90Β° < 𝒙/𝟐 < 135Β° So, π‘₯/2 lies in 2nd quadrant In 2nd quadrant, sin is positive, cos & tan are negative sin π‘₯/2 is positive, cos π‘₯/2 and tan π‘₯/2 are negative Given tan x = 3/4 We know that tan 2x = (2 π‘‘π‘Žπ‘›β‘π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2π‘₯) Replacing x with π‘₯/2 tan (2π‘₯/2) = (2 π‘‘π‘Žπ‘›β‘(π‘₯/2))/(1 βˆ’ π‘‘π‘Žπ‘›2(π‘₯/2) ) tan x = (2 π‘‘π‘Žπ‘›β‘(π‘₯/2))/(1 βˆ’ π‘‘π‘Žπ‘›2(π‘₯/2) ) tan x = (𝟐 𝒕𝒂𝒏⁑(𝒙/𝟐))/(𝟏 βˆ’ π’•π’‚π’πŸ(𝒙/𝟐) ) 3/4 = (2 tan⁑(π‘₯/2))/(1 βˆ’ π‘‘π‘Žπ‘›2(π‘₯/2) ) 3(1 – tan2 (π‘₯/2) = 4 Γ— 2 tan (π‘₯/2) 3 Γ— 1 – 3 Γ— tan2 (π‘₯/2) = 8 tan (π‘₯/2) 3 Γ— 1 – 3 Γ— tan2 (π‘₯/2) = 8 tan (π‘₯/2) 3 – 3 tan2 (π‘₯/2) = 8 tan (π‘₯/2) 0 = –3 + 3tan2 (𝒙/𝟐) + 8 tan 𝒙/𝟐 Replacing tan 𝐱/𝟐 by a Our equation becomes 0 = –3 + 3a2 + 8a 3a2 + 8a – 3 = 0 3a2 + 9a – a – 3 = 0 3a (a + 3) – 1 (a + 3) = 0 (3a – 1) (a + 3) = 0 Hence So, a = 1/3 or a = –3 Hence, tan π‘₯/2 = 1/3 or tan π‘₯/2 = –3 Since π‘₯/2 lies in IInd quadrant So, tan 𝒙/𝟐 is negative, ∴ tan 𝒙/𝟐 = –3 Now, We know that 1 + tan2 x = sec2 x Replacing x with π‘₯/2 1 + tan2 π‘₯/2 = sec2 π‘₯/2 1 + (–3)2 = sec2 π‘₯/2 1 + 9 = sec2 x/2 1 + 9 = sec2 x/2 10 = sec2 π‘₯/2 sec2 π‘₯/2 = 10 sec 𝒙/𝟐 = Β± √𝟏𝟎 Since π‘₯/2 lie on the llnd Quadrant, cos π‘₯/2 is negative in the llnd Quadrant ∴ sec 𝒙/𝟐 is negative in the llnd Quadrant So, sec 𝒙/𝟐 = βˆ’βˆšπŸπŸŽ Therefore, cos 𝒙/𝟐 = (βˆ’πŸ)/√𝟏𝟎 Now, We know that sin2x + cos2x = 1 Replacing x with π‘₯/2 sin2 π‘₯/2 + cos2 π‘₯/2 = 1 sin2 π‘₯/2 = 1 – cos2 π‘₯/2 Putting cos π‘₯/2 = βˆ’1/√10 sin2 𝒙/𝟐 = 1 – ((βˆ’πŸ)/√𝟏𝟎)𝟐 sin2 π‘₯/2 = 1 – 1/10 sin2 π‘₯/2 = (10 βˆ’ 1)/10 sin2 π‘₯/2 = 9/10 sin π‘₯/2 = Β± √(9/10) sin π‘₯/2= Β± √9/√10 sin 𝒙/𝟐 = Β± πŸ‘/√𝟏𝟎 Since π‘₯/2 lies on the 2nd Quadrant sin 𝒙/𝟐 is positive in the 2nd Quadrant So, sin 𝒙/𝟐 = πŸ‘/√𝟏𝟎 Hence, tan π‘₯/2 = βˆ’3 , cos π‘₯/2 = (βˆ’1)/√10 & sin π‘₯/2 = 3/√10

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo