Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 Important
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13
Example 14
Example 15
Example 16 Important
Example 17 Important
Example 18 Important You are here
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Question 1
Question 2
Question 3
Question 4
Question 5 Important
Question 6
Question 7 Important
Last updated at Dec. 16, 2024 by Teachoo
Example 18 If sin 𝑥 = 3/5 , cos y = −12/13 , where 𝑥 and y both lie in second quadrant, find the value of sin (𝑥 + y). We know that sin (x + y) = sin x cos y + cos x sin y We know that value of sin x and cos y but we do not know of cos x and sin y Let us first find cos x We know that sin2x + cos2x = 1 (3/5)^2+ cos2x = 1 9/25 + cos2x = 1 9/25 + cos2x = 1 cos2x = 1 – 9/25 cos2x = (25 − 9)/25 cos2x = 16/25 cos x = ± √(16/25) cos x = ± 𝟒/𝟓 Since x is in llnd Quadrant cos x is negative So, cos x = (−𝟒)/𝟓 Similarly, Finding sin y We know that sin2 y + cos2 y = 1 sin2 y = 1 – cos2 y sin2 y = 1 – ((−𝟏𝟐)/𝟏𝟑)^𝟐 sin2 y = 1 – 144/169 sin2 y = (169 − 144)/169 sin2 y = 25/169 sin y = ± √(25/169) sin y = ± √((5 × 5)/(13 ×13)) sin y = ± 5/13 sin y = ± 𝟓/𝟏𝟑 Since y lies in llnd Quadrant So, sin y is positive ∴ sin y = 𝟓/𝟏𝟑 Now, Putting value of sin x , sin y, cos x, cos y in sin (x + y) = sin x cos y + cos x sin y = 𝟑/𝟓 × ((−𝟏𝟐)/𝟏𝟑) + ((−𝟒)/𝟓) (𝟓/𝟏𝟑) = (−12 × 3)/(5 × 13) + ((−4 × 5)/(5 × 13)) = (−36)/65 + ((−20)/65) = (−36 −20)/65 = (−𝟓𝟔)/𝟔𝟓 Hence, sin (x + y) = (−𝟓𝟔)/𝟔𝟓