Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 Important
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13
Example 14
Example 15
Example 16 Important
Example 17 Important You are here
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Question 1
Question 2
Question 3
Question 4
Question 5 Important
Question 6
Question 7 Important
Last updated at Dec. 16, 2024 by Teachoo
Example 17 Prove that sin〖5x − 〖2sin 3x +〗sinx 〗/𝑐𝑜𝑠〖5x − 𝑐𝑜𝑠x 〗 = tan x Solving L.H.S. sin〖5x + 〖sin x − 〗2sin3x 〗/𝑐𝑜𝑠〖5x − 𝑐𝑜𝑠x 〗 = 〖(𝐬𝐢𝐧〗〖𝟓𝐱 + 〖𝐬𝐢𝐧 𝐱) − 〗〖𝟐 𝐬𝐢𝐧〗𝟑𝐱 〗/𝒄𝒐𝒔〖𝟓𝐱 − 𝒄𝒐𝒔𝐱 〗 Solving numerator and denominator separately sin 5x + sin x = 2 sin ((𝟓𝒙 + 𝒙)/𝟐) cos ((𝟓𝒙 − 𝒙)/𝟐) = 2 sin (6𝑥/2) cos (4𝑥/2) = 2 sin 3x cos 2x cos 5x – cos x = – 2 sin ((𝟓𝒙 + 𝒙)/𝟐) sin((𝟓𝒙 − 𝒙)/𝟐) = – 2 sin (6𝑥/2) sin (4𝑥/2) = – 2 sin 3x sin 2x Solving L.H.S 𝐬𝐢𝐧〖𝟓𝐱 + 〖𝐬𝐢𝐧 𝐱 − 〗2sin3x 〗/𝒄𝒐𝒔〖𝟓𝐱 − 𝒄𝒐𝒔𝐱 〗 Putting values = (𝟐 𝒔𝒊𝒏𝟑𝒙 𝐜𝐨𝐬𝟐𝒙 − 𝟐 𝐬𝐢𝐧𝟑𝒙)/(−𝟐 𝐬𝐢𝐧〖𝟑𝒙 𝒔𝒊𝒏𝟐𝒙 〗 ) = (2 sin3𝑥 (cos〖2𝑥 − 1)〗)/(−2 sin〖3𝑥 sin2𝑥 〗 ) = ( (cos〖2𝑥 − 1)〗)/(−sin2𝑥 ) = ( −(cos〖2𝑥 −1) 〗)/sin2𝑥 = (〖1 − 𝐜𝐨𝐬〗𝟐𝒙 )/𝒔𝒊𝒏𝟐𝒙 = (1 − (𝟏 − 𝟐 𝐬𝐢𝐧𝟐𝒙 ) )/(𝟐 𝒄𝒐𝒔𝒙 𝒔𝒊𝒏𝒙 ) = (1 − 1 + 2 sin2𝑥)/(2 cos〖𝑥 〗 sin𝑥 ) = (0 + 2 sin2𝑥)/(2 cos〖𝑥 〗 sin𝑥 ) = (𝟐 𝐬𝐢𝐧𝟐𝒙)/(𝟐 𝒄𝒐𝒔〖𝒙 〗 𝒔𝒊𝒏𝒙 ) = sin〖𝑥 〗/cos〖𝑥 〗 = tan x = R.H.S. Hence L.H.S. = R.H.S. Hence proved