Slide56.JPG

Slide57.JPG
Slide58.JPG
Slide59.JPG

Go Ad-free

Transcript

Ex 3.3, 23 Prove that tan⁑4π‘₯ = (4 tan⁑〖π‘₯ (1βˆ’tan2π‘₯)γ€—)/(1 βˆ’ 6 tan2 π‘₯+tan4 π‘₯) Solving L.H.S. tan 4x We know that tan 2x = (2 π‘‘π‘Žπ‘›β‘π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯) Replacing x with 2x tan (2 Γ— 2x) = (2 π‘‘π‘Žπ‘›β‘2π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 2π‘₯) tan 4x = (2 π‘‘π‘Žπ‘›β‘2π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 2π‘₯) = (𝟐 𝐭𝐚𝐧⁑𝟐𝐱)/(𝟏 βˆ’ 𝐭𝐚𝐧𝟐 𝟐𝐱) = 2((𝟐 𝒕𝒂𝒏⁑𝒙)/(𝟏 βˆ’ π’•π’‚π’πŸ 𝒙))/(1 βˆ’ ((𝟐 𝒕𝒂𝒏⁑𝒙)/(𝟏 βˆ’ π’•π’‚π’πŸ 𝒙))^2 ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/(1 βˆ’((2 tan⁑π‘₯ )^2/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/(1 βˆ’((4 γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/((((1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 βˆ’4 γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (πŸ’ 𝒕𝒂𝒏⁑𝒙)/(𝟏 βˆ’ π­πšπ§πŸβ‘π’™ ) Γ— (𝟏 βˆ’ π­πšπ§πŸβ‘π’™ )^𝟐/((𝟏 βˆ’ π’•π’‚π’πŸ 𝒙)𝟐 βˆ’πŸ’ π­πšπ§πŸβ‘π’™ ) = (4 tan⁑π‘₯)/1 Γ— ((1 βˆ’ tan2⁑〖π‘₯)γ€—)/((1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’ 4 tan2⁑π‘₯ ) = (πŸ’ 𝒕𝒂𝒏⁑〖𝒙 (𝟏 βˆ’ π’•π’‚π’πŸ 𝒙〗))/((𝟏 βˆ’π­πšπ§πŸβ‘π’™ )𝟐 βˆ’ πŸ’ π’•π’‚π’β‘πŸπ’™ ) Using (a – b)2 = a2 + b2 – 2ab = (4 tan⁑〖π‘₯ (1 βˆ’ tan2⁑π‘₯)γ€—)/(( 12+(π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’ 2 Γ— 1 Γ— π‘‘π‘Žπ‘›2 π‘₯) βˆ’4 π‘‘π‘Žπ‘›2 π‘₯) = (4 tan⁑〖π‘₯ (1 βˆ’ tan2⁑π‘₯)γ€—)/(1 + tan⁑〖4 π‘₯ βˆ’ 2 tan2⁑〖π‘₯ βˆ’4 tan2⁑π‘₯ γ€— γ€— ) = (πŸ’ 𝒕𝒂𝒏⁑〖𝒙 (𝟏 βˆ’ π­πšπ§πŸβ‘γ€–π’™)γ€— γ€—)/(𝟏 + π­πšπ§πŸ’β‘γ€–π’™ βˆ’ πŸ” π’•π’‚π’πŸ’ 𝒙〗 ) = R.H.S. Hence L.H.S. = R.H.S. Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo