Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important You are here
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 22 Prove that cot 𝑥 cot 2𝑥 – cot 2𝑥 cot 3𝑥 – cot 3𝑥 cot 𝑥 = 1 Solving L.H.S. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = cot x cot 2x – cot 3x (cot 2x + cot x) = cot x cot 2x – cot (2x + x) (cot 2x + cot x) = cot x cot 2x – ((cot 2x cot x − 1)/(cot x + cot 2x)) (cot 2x + cot x) = cot x cot 2x – (cot 2x cot x – 1) = cot x cot 2x – cot 2x cot x + 1 = 1 = R.H.S. Hence L.H.S = R.H.S Hence proved