Slide48.JPG

Slide49.JPG

Go Ad-free

Transcript

Ex 3.3, 20 Prove that 〖sin x − 〗⁡sin⁡3x /(sin2⁡x − cos2⁡x ) = 2 sin x Solving L.H.S. 〖sin x −〗⁡sin⁡3x /(sin2⁡x − cos2⁡x ) We solve sin x – sin 3x & sin2 x – cos2 x separately sin x – sin 3x = 2 cos ((x + 3x)/2) sin((x − 3x)/2) = 2 cos (4𝑥/2) sin ((−2𝑥)/2) = 2 cos 2x sin (–x) sin2 x – cos2 x = – cos 2x We know that cos 2x = cos2 x – sin2 x cos 2x = – ( sin2 x – cos2 x) Thus, −( sin2 x – cos2 x) = cos 2x − ( sin2 x – cos2 x) = – cos 2x Now, sin⁡〖𝑥 − sin⁡3𝑥 〗/sin2⁡〖𝑥 − cos2⁡𝑥 〗 = 〖𝟐 𝒄𝒐𝒔 〗⁡〖𝟐𝒙 〖 𝒔𝒊𝒏〗⁡〖(−𝒙)〗 〗/〖−𝒄𝒐𝒔〗⁡𝟐𝒙 = 〖2 𝑐𝑜𝑠〗⁡〖2𝑥 〖(− sin〗⁡𝑥)〗/〖−𝑐𝑜𝑠〗⁡2𝑥 = 2sin x = R.H.S. Hence L.H.S. = R.H.S. Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo