Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19 You are here
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 19 Prove that γsin x +γβ‘sinβ‘3x /(πππ β‘x + πππ β‘3x ) = tan 2x Solving L.H.S. γsin x +γβ‘sinβ‘3x /(πππ β‘x + πππ β‘3x ) We solve sin x + sin 3x & cos x + cos 3x seperately sin x + sin 3x = 2 sin ((x+3x)/2) cos ((xβ3x)/2) = 2 sin (4π₯/2) cos ((β2π₯)/2) = 2 sin 2x cos (βx) cos x + cos 3x = 2 cos ((x+3x)/2) cos ((5xβ3x)/2) = 2 cos (4π₯/2) cos ((β2π₯)/2) = 2 cos 2x cos (βx) Now π ππβ‘γπ₯ + π ππβ‘3π₯ γ/πππ β‘γπ₯ + πππ β‘3π₯ γ = (π γ πππ γβ‘γππ πππβ‘γ(βπ)γ γ)/(π πππβ‘γ ππ πππβ‘γ(βπ)γ γ ) = π ππβ‘γ 2xγ/cosβ‘γ 2xγ = tan 2x = R.H.S Hence L.H.S = R.H.S Hence proved