Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important You are here
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 16 Prove that πππ β‘γ9π₯ βγ πππ γβ‘5π₯ γ/(π ππ 17π₯ β π ππβ‘3π₯ ) =βπ ππβ‘γ2π₯ γ/πππ β‘10π₯ Solving L.H.S πππ β‘γ9π₯ βγ πππ γβ‘5π₯ γ/(π ππ 17π₯ β π ππβ‘3π₯ ) We solve cos 9x β cos 5x & sin 17x β sin 3x seperately cos 9x β cos 5x = β 2 sin ((9x+5x)/2) sin((9xβ5x)/2) = β 2 sin (14π₯/2) sin (4π₯/2) = β 2 sin 7x sin (2x) sin 17x β sin 3x = 2 cos ((17x+3x)/2) sin((17xβ3x)/2) = 2 cos (20π₯/2) sin (14π₯/2) = 2 cos 10x sin 7x Now, πππ β‘γ9π₯ βγ πππ γβ‘5π₯ γ/(π ππ 17π₯ β π ππβ‘3π₯ ) = (βπ γπ¬π’π§ γβ‘γ(ππ±)γπ¬π’π§ γβ‘γ(ππ±)γ γ)/(π πππβ‘γ(πππ±)π¬π’π§β‘γ (ππ±)γ γ ) = γβsinγβ‘γ(2x)γ/πππ β‘γ(10x)γ = R.H.S So, L.H.S. = R.H.S. Hence proved