Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14 You are here
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 14 Prove that sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x Solving L.H.S. sin 2x + 2sin 4x + sin 6x = (sin 6x + sin 2x) + 2sin 4x = 2 sin ((6𝑥 + 2𝑥)/2) cos ((6𝑥 − 2𝑥)/2) + 2sin 4x = 2 sin (8𝑥/2) cos (4𝑥/2) + 2sin 4x = 2 sin 4x cos 2x + 2sin 4x = 2 sin 4x (cos 2x + 1) = 2 sin 4x ( 2cos2x – 1 + 1) = 2 sin 4x (2cos2x) = 4 sin 4x cos2x = R.H.S Hence L.H.S = R.H.S Hence proved