Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important You are here
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 9 Prove cos (3Ο/2+π₯) cos (2Ο + π₯)[cot (3Ο/2βπ₯) + cot (2Ο + π₯)] =1 Solving L.H.S. Now, cos (ππ /π "+ " π) = sin x cos (2Ο + x) = cos x cot (2Ο + x) = cot x cot (ππ /πβπ) = tan x Now putting values in equation cos (3Ο/2+π₯) cos (2Ο + π₯)[cot (3Ο/2βπ₯) + cot (2Ο + π₯)] = (sin x) Γ (cos x) Γ [tan x + cot x] = (sin x cos x) Γ [cot x + tan x] = (sin x cos x) Γ [πππβ‘π/πππβ‘π + πππβ‘π/πππβ‘π ] = (sin x cos x) Γ [(γ(cosγβ‘π₯) Γ γ(cosγβ‘π₯)+γ (sinγβ‘π₯) Γ γ(sinγβ‘π₯))/(sinβ‘π₯ Γ γ(cosγβ‘π₯))] = (sin x cos x) Γ [(ππ¨π¬πβ‘π +γ π¬π’π§πγβ‘π)/(πππβ‘π Γ γ(πππγβ‘π))] = cos2β‘π₯ +γ sin2γβ‘π₯ = 1 = R.H.S Hence proved