Finding Value of trignometric functions, given angle
Value of sin, cos, tan repeats after 2Ο
Shifting angle by Ο/2, Ο, 3Ο/2 , 2Ο
Example 8
Ex 3.2, 9 Important
Ex 3.2, 8
Ex 3.2, 10 Important
Example 9 Important
Ex 3.2, 6
Ex 3.2, 7 Important
Example 10
Ex 3.3, 1 Important
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 8 Important
Ex 3.3, 9 Important You are here
Find values of sin 18, cos 18, cos 36, sin 36, sin 54, cos 54 Important
Finding Value of trignometric functions, given angle
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 9 Prove cos (3Ο/2+π₯) cos (2Ο + π₯)[cot (3Ο/2βπ₯) + cot (2Ο + π₯)] =1 Solving L.H.S. Now, cos (ππ /π "+ " π) = sin x cos (2Ο + x) = cos x cot (2Ο + x) = cot x cot (ππ /πβπ) = tan x Now putting values in equation cos (3Ο/2+π₯) cos (2Ο + π₯)[cot (3Ο/2βπ₯) + cot (2Ο + π₯)] = (sin x) Γ (cos x) Γ [tan x + cot x] = (sin x cos x) Γ [cot x + tan x] = (sin x cos x) Γ [πππβ‘π/πππβ‘π + πππβ‘π/πππβ‘π ] = (sin x cos x) Γ [(γ(cosγβ‘π₯) Γ γ(cosγβ‘π₯)+γ (sinγβ‘π₯) Γ γ(sinγβ‘π₯))/(sinβ‘π₯ Γ γ(cosγβ‘π₯))] = (sin x cos x) Γ [(ππ¨π¬πβ‘π +γ π¬π’π§πγβ‘π)/(πππβ‘π Γ γ(πππγβ‘π))] = cos2β‘π₯ +γ sin2γβ‘π₯ = 1 = R.H.S Hence proved