Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4 You are here
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 4 Prove that 2sin2 3π/4 + 2cos2 π/4 + 2sec2 π/3 = 10 Solving L.H.S 2sin2 3π/4 + 2cos2 π/4 + 2sec2 π/3 Putting π = 180° 2 sin2 (3 × 180/4 ) + 2cos2 (180/4) + 2sec2 (180/3) = 2sin2 (135°) + 2 cos2 (45°) + 2sec2(60°) Here, cos 45° = 1/√2 sec 60° = 1/cos〖60°〗 = 1/(1/2) = 2 sin 135° = sin ( 180 – 45° ) = sin 45° = 1/√2 Putting values 2 sin2 (135°) +2 cos2 (45°) + 2sec2 (60°) = 2 × (𝟏/√𝟐)^𝟐 + 2 × (𝟏/√𝟐)^𝟐 + 2 × (2)2 = 2 [(1/√2)^2 " + " (1/√2)^2 " + 22" ] = 2 [ 1/2 + 1/2 + 4] = 2 [1 + 4] = 2 × 5 = 10 = R.H.S ∴ L.H.S. = R.H.S. Hence proved