Finding Value of trignometric functions, given angle
Value of sin, cos, tan repeats after 2π
Shifting angle by π/2, π, 3π/2 , 2π
Example 8
Ex 3.2, 9 Important
Ex 3.2, 8
Ex 3.2, 10 Important
Example 9 Important
Ex 3.2, 6
Ex 3.2, 7 Important
Example 10
Ex 3.3, 1 Important
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4 You are here
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Find values of sin 18, cos 18, cos 36, sin 36, sin 54, cos 54 Important
Finding Value of trignometric functions, given angle
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 4 Prove that 2sin2 3π/4 + 2cos2 π/4 + 2sec2 π/3 = 10 Solving L.H.S 2sin2 3π/4 + 2cos2 π/4 + 2sec2 π/3 Putting π = 180° 2 sin2 (3 × 180/4 ) + 2cos2 (180/4) + 2sec2 (180/3) = 2sin2 (135°) + 2 cos2 (45°) + 2sec2(60°) Here, cos 45° = 1/√2 sec 60° = 1/cos〖60°〗 = 1/(1/2) = 2 sin 135° = sin ( 180 – 45° ) = sin 45° = 1/√2 Putting values 2 sin2 (135°) +2 cos2 (45°) + 2sec2 (60°) = 2 × (𝟏/√𝟐)^𝟐 + 2 × (𝟏/√𝟐)^𝟐 + 2 × (2)2 = 2 [(1/√2)^2 " + " (1/√2)^2 " + 22" ] = 2 [ 1/2 + 1/2 + 4] = 2 [1 + 4] = 2 × 5 = 10 = R.H.S ∴ L.H.S. = R.H.S. Hence proved