Example 16 - Let f(x) = x2 and g(x) = 2x + 1. Find f + g, fg,f/g

Example 16 - Chapter 2 Class 11 Relations and Functions - Part 2
Example 16 - Chapter 2 Class 11 Relations and Functions - Part 3

Go Ad-free

Transcript

Example 16 Let f(x) = x2and g(x) = 2x + 1 be two real functions. Find (f + g) (x), (f – g) (x), (fg) (x), ("f" /𝑔) (x) f(x) = x2 & g(x) = 2x + 1 (f + g) (x) = f(x) + g(x) = (x2) + (2x + 1) = x2 + 2x + 1, ∴(f + g) (x) = x2 + 2x + 1 (f – g) (x) = f(x) – g(x) = (x2) – (2x + 1) = x2 – 2x – 1 ∴ (f – g) (x) = x2 – 2x – 1 f(x) = x2 & g(x) = 2x + 1 (fg) (x) = f(x) × g(x) = x2 (2x + 1) = x2 (2x) + x2 (1) = 2x3 + x2, ∴ (fg) (x) = 2x3 + x2, (f/g) (x) = (f(x))/(g(x)) where, g (x) ≠ 0, x ∈ R = x2/(2x + 1) Example 16 Let f(x) = x2and g(x) = 2x + 1 be two real functions. Find (f + g) (x), (f – g) (x), (fg) (x), ("f" /𝑔) (x) f(x) = x2 & g(x) = 2x + 1 (f + g) (x) = f(x) + g(x) = (x2) + (2x + 1) = x2 + 2x + 1, ∴(f + g) (x) = x2 + 2x + 1 (f – g) (x) = f(x) – g(x) = (x2) – (2x + 1) = x2 – 2x – 1 ∴ (f – g) (x) = x2 – 2x – 1 f(x) = x2 & g(x) = 2x + 1 (fg) (x) = f(x) × g(x) = x2 (2x + 1) = x2 (2x) + x2 (1) = 2x3 + x2, ∴ (fg) (x) = 2x3 + x2, (f/g) (x) = (f(x))/(g(x)) where, g (x) ≠ 0, x ∈ R = x2/(2x + 1) Where , 2x + 1 ≠ 0 2x ≠ 0 – 1 2x ≠ – 1 x ≠ (−1)/2 ∴ (𝐟/𝐠) (x) = 𝒙𝟐/(𝟐𝒙 + 𝟏) , where x ≠ (−𝟏)/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo