Miscellaneous
Misc 2 (i)
Misc 2 (ii) Important
Misc 2 (iii) Important
Misc 2 (iv)
Misc 2 (v)
Misc 2 (vi) Important
Misc 3
Misc 4 Important
Misc 5
Misc 6 Important You are here
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important
Question 1
Question 2 Important
Question 3 Important
Question 4
Question 5 Important
Question 6 Important
Last updated at Dec. 13, 2024 by Teachoo
Misc 6 - Introduction Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B) Let U = {1, 2, 3, 4, 5} A = {1, 2} B = {2, 3, 4} A – B = A – (A ∩ B) = {1, 2} – {2} = {1} We use the result A – B = A ∩ B’ in this question Also, B’ = U – B = {1, 2, 3, 4, 5} – {2, 3, 4} = {1, 5} A – B = A ∩ B’ = {1, 2} ∩ {1, 5} = {1} Misc 6 Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B) To prove : A = (A ∩ B) ∪ (A – B) Solving R.H.S (A ∩ B) ∪ (A – B) Using A – B = A – (A ∩ B) = A ∩ B’ = (A ∩ B) ∪ (A ∩ B’) = A ∩ (B ∪ B’) = A ∩ (U) = A = L.H.S Hence proved To prove : A ∪ (B – A) = (A ∪ B) Taking L.H.S A ∪ (B – A) Using B – A = B – (A ∩ B) = B ∩ A’ = A ∪ (B ∩ A’) Using distributive law :A ∪ (B ∩ C)= (A ∪ B) ∩ (A ∪ C) = (A ∪ B) ∩ (A ∪ A’) = (A ∪ B) ∩ (U) = (A ∪ B) = R.H.S Hence proved