Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii)
Example 6 (iv)
Example 6 (v)
Example 7 Important
Example 8 (i)
Example 8 (ii)
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16
Example 17
Example 18 Important
Example 19
Example 20
Example 21
Example 22 Important You are here
Example 23
Example 24 Important
Example 25
Question 1
Question 2 Important
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Last updated at April 16, 2024 by Teachoo
Example 22 Let U = {1, 2, 3, 4, 5, 6}, A = {2, 3} and B = {3, 4, 5}. Find A′, B′ , A′ ∩ B′, A ∪ B and hence show that (A ∪ B)′ = A′ ∩ B′. A′ = U – A = {1, 2, 3, 4, 5, 6} – {2, 3} = {1, 4, 5, 6} B′ = U – B = {1, 2, 3, 4, 5, 6} – {3, 4, 5} = {1, 2, 6} Now, A′ ∩ B′ = {1, 4, 5, 6} ∩ {1, 2, 6} = {1, 6} ∩ Intersection – Common of two sets ∪ Union - Combination of two sets Also, A ∪ B = {2, 3} ∪ {3, 4, 5} = { 2, 3, 4, 5 } Now, we need to prove (A ∪ B)′ = A′ ∩ B′ (A ∪ B)′ = U – (A ∪ B ) = {1, 2, 3, 4, 5, 6} – {2, 3, 4, 5} = {1, 6} Now, A′ ∩ B′ = {1, 6} & (A ∪ B)′ = {1, 6} Thus, (A ∪ B)′ = A′ ∩ B′ Hence proved