An insect is crawling along the line insect is crawling along the line r = 6i Μ‚+2j Μ‚+2k Μ‚+λ(i Μ‚-2j Μ‚+2k Μ‚ ) and another insect is crawling along the line r = −4i Μ‚-k Μ‚+μ(3i Μ‚-2j Μ‚-2k Μ‚ ). At what points on the lines should they reach so that the distance between them is the shortest? possible distance between them

 

Slide1.JPG

Slide2.JPG
Slide3.JPG
Slide4.JPG
Slide5.JPG Slide6.JPG Slide7.JPG

Go Ad-free

Transcript

Question 34 (Choice 1) An insect is crawling along the line insect is crawling along the line π‘Ÿ βƒ— = 6𝑖 Μ‚+2𝑗 Μ‚+2π‘˜ Μ‚+πœ†(𝑖 Μ‚βˆ’2𝑗 Μ‚+2π‘˜ Μ‚ ) and another insect is crawling along the line π‘Ÿ βƒ— = βˆ’4𝑖 Μ‚βˆ’π‘˜ Μ‚+πœ‡(3𝑖 Μ‚βˆ’2𝑗 Μ‚βˆ’2π‘˜ Μ‚ ). At what points on the lines should they reach so that the distance between them is the shortest? Find the shortest possible distance between them Line 2 π‘Ÿ βƒ— = βˆ’4𝑖 Μ‚βˆ’π‘˜ Μ‚ + πœ‡(3𝑖 Μ‚βˆ’2𝑗 Μ‚βˆ’2π‘˜ Μ‚ ) Line 1 π‘Ÿ βƒ— = 6𝑖 Μ‚+2𝑗 Μ‚+2π‘˜ Μ‚ +πœ†(𝑖 Μ‚βˆ’2𝑗 Μ‚+2π‘˜ Μ‚ ) ο»ΏThe given lines are non-parallel lines. Let Shortest distance = |(𝑃𝑄) βƒ— | Since (𝑃𝑄) βƒ— is shortest distance, (𝑃𝑄) βƒ— βŠ₯ Line 1 (𝑃𝑄) βƒ— βŠ₯ Line 2 Point P Since point P lies on Line 1 Position vector of P = 6𝑖 Μ‚+2𝑗 Μ‚+2π‘˜ Μ‚+πœ†(𝑖 Μ‚βˆ’2𝑗 Μ‚+2π‘˜ Μ‚ ) = (6+πœ†) 𝑖 Μ‚+(2βˆ’2πœ†)𝑗 Μ‚+(2+2πœ†)π‘˜ Μ‚ Point Q Since point Q lies on Line 2 Position vector of Q = βˆ’4𝑖 Μ‚βˆ’π‘˜ Μ‚+πœ‡(3𝑖 Μ‚βˆ’2𝑗 Μ‚βˆ’2π‘˜ Μ‚ ) = (βˆ’4+3πœ‡) 𝑖 Μ‚βˆ’2πœ‡π‘— Μ‚+(βˆ’1βˆ’2πœ‡)π‘˜ Μ‚ Now, (𝑷𝑸) βƒ— = Position vector of Q βˆ’ Position vector of P = [(βˆ’4+3πœ‡) 𝑖 Μ‚βˆ’2πœ‡π‘— Μ‚+(βˆ’1βˆ’2πœ‡) π‘˜ Μ‚ ]βˆ’[(6+πœ†) 𝑖 Μ‚+(2βˆ’2πœ†)𝑗 Μ‚+(2+2πœ†)π‘˜ Μ‚] = ο»Ώ(βˆ’10 + 3πœ‡ βˆ’ πœ†)πš€Μ‚ + (βˆ’2πœ‡ βˆ’ 2 + 2πœ†)πš₯Μ‚ + (βˆ’3 βˆ’ 2πœ‡ βˆ’ 2πœ†)π‘˜ Now, (𝑷𝑸) βƒ— βŠ₯ Line 1 (π‘Ÿ βƒ— = 6𝑖 Μ‚+2𝑗 Μ‚+2π‘˜ Μ‚+πœ†(𝑖 Μ‚βˆ’2𝑗 Μ‚+2π‘˜ Μ‚ )) Thus, (𝑃𝑄) βƒ— βŠ₯ (𝑖 Μ‚βˆ’2𝑗 Μ‚+2π‘˜ Μ‚ ) And (𝑷𝑸) βƒ— . (π’Š Μ‚βˆ’πŸπ’‹ Μ‚+πŸπ’Œ Μ‚ )=βˆ’πŸŽ (βˆ’10 + 3πœ‡ βˆ’ πœ†)πš€Μ‚ + (βˆ’2πœ‡ βˆ’ 2 + 2πœ†)πš₯Μ‚ + (βˆ’3 βˆ’ 2πœ‡ βˆ’ 2πœ†)π‘˜. (π’Š Μ‚βˆ’πŸπ’‹ Μ‚+πŸπ’Œ Μ‚ )=βˆ’πŸŽ (βˆ’10 + 3πœ‡ βˆ’ πœ†)1 + (βˆ’2πœ‡ βˆ’ 2 + 2πœ†)(βˆ’2) + (βˆ’3 βˆ’ 2πœ‡ βˆ’ 2πœ†)2 = 0 (βˆ’10 + 3πœ‡ βˆ’ πœ†) + (4πœ‡ + 4 βˆ’ 4πœ†) + (βˆ’6 βˆ’ 4πœ‡ βˆ’ 4πœ†) = 0 (βˆ’10 + 4 βˆ’ 6) + (βˆ’ πœ† βˆ’ 4πœ† βˆ’ 4πœ†) + (3πœ‡ + 4πœ‡ βˆ’ 4πœ‡) = 0 βˆ’12 βˆ’ 9πœ† + 3πœ‡ = 0 3πœ‡ βˆ’ 9πœ† = 12 3(πœ‡ βˆ’ 3πœ†) = 12 πœ‡ βˆ’ 3πœ† = 4 Similarly (𝑷𝑸) βƒ— βŠ₯ Line 2 (π‘Ÿ βƒ— = βˆ’4𝑖 Μ‚βˆ’π‘˜ Μ‚+πœ‡(3𝑖 Μ‚βˆ’2𝑗 Μ‚βˆ’2π‘˜ Μ‚ )) Thus, (𝑃𝑄) βƒ— βŠ₯(3𝑖 Μ‚βˆ’2𝑗 Μ‚βˆ’2π‘˜ Μ‚ ) And (𝑷𝑸) βƒ— .(3𝑖 Μ‚βˆ’2𝑗 Μ‚βˆ’2π‘˜ Μ‚ )=βˆ’πŸŽ (βˆ’10 + 3πœ‡ βˆ’ πœ†)πš€Μ‚ + (βˆ’2πœ‡ βˆ’ 2 + 2πœ†)πš₯Μ‚ + (βˆ’3 βˆ’ 2πœ‡ βˆ’ 2πœ†)π‘˜.(3𝑖 Μ‚βˆ’2𝑗 Μ‚βˆ’2π‘˜ Μ‚ )=βˆ’πŸŽ (βˆ’10 + 3πœ‡ βˆ’ πœ†)3 + (βˆ’2πœ‡ βˆ’ 2 + 2πœ†)(βˆ’2) + (βˆ’3 βˆ’ 2πœ‡ βˆ’ 2πœ†)(βˆ’2) = 0 (βˆ’30 + 9πœ‡ βˆ’ 3πœ†) + (4πœ‡ + 4 βˆ’ 4πœ†) + (6 + 4πœ‡ + 4πœ†) = 0 (βˆ’30 + 4 + 6) + (βˆ’3πœ† βˆ’ 4πœ† + 4πœ†) + (9πœ‡ + 4πœ‡ + 4πœ‡) = 0 βˆ’20 βˆ’ 3πœ† + 17πœ‡ = 0 17πœ‡ βˆ’ 3πœ† = 20 Thus, our equations are πœ‡ βˆ’ 3πœ† = 4 …(1) 17πœ‡ βˆ’ 3πœ† = 20 …(2) Solving (1) and (2) We get πœ‡ = 1, πœ† = βˆ’1 Point P Position vector of P = (6+πœ†) 𝑖 Μ‚+(2βˆ’2πœ†)𝑗 Μ‚+(2+2πœ†)π‘˜ Μ‚ Putting πœ† = βˆ’1 = (6+(βˆ’1)) 𝑖 Μ‚+(2βˆ’2(βˆ’1))𝑗 Μ‚+(2+2(βˆ’1))π‘˜ Μ‚ = πŸ“π’Š Μ‚+πŸ’π’‹ Μ‚ Point Q Position vector of Q = (βˆ’4+3πœ‡) 𝑖 Μ‚βˆ’2πœ‡π‘— Μ‚+(βˆ’1βˆ’2πœ‡)π‘˜ Μ‚ Putting πœ‡ = 1 = (βˆ’4+3(1)) 𝑖 Μ‚βˆ’2(1) 𝑗 Μ‚+(βˆ’1βˆ’2(1))π‘˜ Μ‚ = βˆ’π’Š Μ‚βˆ’πŸπ’‹ Μ‚βˆ’πŸ‘π‘˜ Μ‚Now, (𝑷𝑸) βƒ— = Position vector of Q βˆ’ Position vector of P = [βˆ’π‘– Μ‚βˆ’2𝑗 Μ‚βˆ’3π‘˜]βˆ’[5𝑖 Μ‚+4𝑗 Μ‚] = βˆ’πŸ”π’Š Μ‚βˆ’πŸ”π’‹ Μ‚βˆ’πŸ‘π’Œ Μ‚ And, Shortest distance = |(𝑃𝑄) βƒ— | = √((βˆ’6)^2+(βˆ’6)^2+(βˆ’3)^2 ) = √(36+36+9) = √81 = 9 units

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo