If y√1-x 2 +x√1-y 2 =1, then prove that dy/dx=-√1 - y 2 /1 - x 2

Slide73.JPG
Slide74.JPG
Slide75.JPG

Go Ad-free

Transcript

Question 24 If π‘¦βˆš(1βˆ’π‘₯^2 )+π‘₯√(1βˆ’π‘¦^2 )=1, then prove that dy/dx=βˆ’βˆš((1 βˆ’ 𝑦^2)/(1 βˆ’ π‘₯^2 )) Finding π’…π’š/𝒅𝒙 would be complicated here To make life easy, we substitute x = sin A y = sin B (As √(1βˆ’π‘₯^2 )= √(1βˆ’sin^2⁑𝐴 )=√(cos^2⁑𝐴 )) And then solve Let’s substitute x = sin A y = sin B in our equation Now π‘¦βˆš(1βˆ’π‘₯^2 ) + π‘₯√(1βˆ’π‘¦^2 ) = 1 Putting x = sin A and y = sin B 𝐬𝐒𝐧 𝐁√(πŸβˆ’γ€–π¬π’π§γ€—^πŸβ‘π‘¨ ) + 𝐬𝐒𝐧 π€βˆš(πŸβˆ’γ€–π’”π’Šπ’γ€—^πŸβ‘π‘© ) = 1 sin B√(cos^2⁑𝐴 ) + sin A√(cos^2⁑𝐡 ) = a (sin A βˆ’ sin B) sin B cos A + sin A cos B = 1 sin A cos B + sin B cos A = 1 sin (A + B) = 1 sin (A + B) = sin 𝝅/𝟐 A + B = 𝝅/𝟐 Putting back values of A and B sin^(βˆ’1)⁑π‘₯+sin^(βˆ’1)⁑𝑦=πœ‹/2 Differentiating w.r.t x 1/√(1 βˆ’ π‘₯^2 )βˆ’1/√(1 βˆ’ 𝑦^2 )×𝑑𝑦/𝑑π‘₯=0 1/√(1 βˆ’ π‘₯^2 )=1/√(1 βˆ’ 𝑦^2 )×𝑑𝑦/𝑑π‘₯ √(1 βˆ’ 𝑦^2 )/√(1 βˆ’ π‘₯^2 )=𝑑𝑦/𝑑π‘₯ π’…π’š/(𝒅𝒙 ) = √(𝟏 βˆ’ π’š^𝟐 )/√(𝟏 βˆ’ 𝒙^𝟐 )

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo