Slide27.JPG

Slide28.JPG
Slide29.JPG

Go Ad-free

Transcript

Example 11 Prove that cot⁑〖𝐴 βˆ’ cos⁑𝐴 γ€—/cot⁑〖𝐴 + cos⁑𝐴 γ€— =(π‘π‘œπ‘ π‘’π‘ 𝐴 βˆ’ 1)/(π‘π‘œπ‘ π‘’π‘ 𝐴 + 1) Taking L.H.S cot⁑〖𝐴 βˆ’γ€– cos〗⁑𝐴 γ€—/cot⁑〖𝐴 +γ€– cos〗⁑𝐴 γ€— Writing everything in terms of sin A and cos A = (cos⁑〖 𝐴〗/sin⁑〖 𝐴〗 βˆ’γ€– cos〗⁑〖 𝐴〗)/(cos⁑〖 𝐴〗/sin⁑〖 𝐴〗 +γ€– cos〗⁑〖 𝐴〗 ) = cos⁑〖 𝐴 βˆ’γ€– cos〗⁑〖 𝐴 sin⁑〖 𝐴〗 γ€— γ€—/(sin⁑〖 𝐴〗/(cos⁑〖 𝐴 + cos⁑〖 𝐴 sin⁑〖 𝐴〗 γ€— γ€—/sin⁑〖 𝐴〗 )) = ( (𝒄𝒐𝒔⁑〖 𝑨〗 βˆ’ 𝒄𝒐𝒔⁑〖 𝑨〗 sin⁑〖 𝐴 γ€—))/((𝒄𝒐𝒔⁑〖 𝑨〗 + 𝒄𝒐𝒔⁑〖 𝑨〗 sin⁑〖 𝐴 γ€—)) = (𝒄𝒐𝒔⁑〖 𝑨〗 (1 βˆ’ sin⁑〖 𝐴 γ€—))/(𝒄𝒐𝒔⁑〖 𝑨〗 (1 + sin⁑〖 𝐴 γ€—)) = ( (1 βˆ’ sin⁑〖 𝐴 γ€—))/( (1 + sin⁑〖 𝐴 γ€—)) Dividing sin A on numerator and denominator = ( ((1 βˆ’ sin⁑〖 𝐴 γ€—))/(π’”π’Šπ’ 𝑨))/( ((1 + sin⁑〖 𝐴 γ€—))/(π’”π’Šπ’ 𝑨 )) = ( 1/(𝑠𝑖𝑛 𝐴) βˆ’ (𝑠𝑖𝑛 𝐴)/(𝑠𝑖𝑛 𝐴))/(1/(𝑠𝑖𝑛 𝐴) + (𝑠𝑖𝑛 𝐴)/(𝑠𝑖𝑛 𝐴)) = ( 1/(𝑠𝑖𝑛 𝐴) βˆ’ 1)/(1/(𝑠𝑖𝑛 𝐴) + 1) = (𝒄𝒐𝒔𝒆𝒄 𝑨 βˆ’ 𝟏)/(𝒄𝒐𝒔𝒆𝒄 𝑨 + 𝟏) = R.H.S. So, L.H.S = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo