Slide25.JPG

Slide26.JPG

Go Ad-free

Transcript

Example 10 Prove that sec A (1 – sin A)(sec A + tan A) = 1. Solving L.H.S sec A (1 – sin A) (sec A + tan A) Writing everything in terms of sin A and cos A = 1/cos⁑〖 𝐴〗 (1 – sin A) (" " 1/cos⁑〖 𝐴〗 +" " sin⁑〖 𝐴〗/cos⁑〖 𝐴〗 ) = ((1 βˆ’γ€– sin〗⁑〖 𝐴)γ€—)/(cos⁑ 𝐴) (" " (1 +γ€– sin〗⁑〖 𝐴〗)/cos⁑〖 𝐴〗 ) = ((𝟏 βˆ’γ€– π’”π’Šπ’γ€—β‘γ€– 𝑨) (𝟏+γ€– π’”π’Šπ’γ€—β‘γ€– 𝑨)γ€— γ€—)/(𝒄𝒐𝒔⁑ 𝑨 Γ— 𝒄𝒐𝒔⁑〖 𝑨〗 ) Since (a – b) (a + b) = a2 – b2 = ((12 βˆ’γ€– sin2〗⁑〖 𝐴) γ€—)/( cos⁑〖2 𝐴〗 ) = ((𝟏 βˆ’γ€– π¬π’π§πŸγ€—β‘γ€– 𝑨) γ€—)/( π’„π’π’”β‘γ€–πŸ 𝑨〗 ) = (π’„π’π’”πŸ 𝑨)/(𝐜𝐨𝐬𝟐⁑ 𝑨) = 1 = R.H.S Thus, L.H.S = R.H.S Hence proved cos2 A + sin2 A = 1 cos2 A = 1 – sin2 A 1 – sin2 A = cos2 A

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo