Verify the following using truth table (X+Y)' = X'. Y'
Answer:
To prove: (X+Y)’ = X’.Y’
X |
Y |
X’ |
Y’ |
X+Y |
(X+Y)’ |
X’.Y’ |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
The values of column (X+Y)’ and column X’.Y’ match.
Hence, the expression (X+Y)’ = X’.Y’ is verified.