Verify the following using Boolean Laws: U’ + V = U’V’ + U’.V + U.V
Answer:
To prove: U’ + V = U’V’ + U’.V + U.V
RHS
= U’V’ + U’.V + U.V
= U’.(V+V’) + U.V (using distributive law)
= U’.(1) + U.V (using complement law)
= U’ + U.V (using identity law)
= (U’+U) . (U’+V) (using distributive law)
= 1.(U’+V) (using complement law)
= U’+V (using identity law)
= LHS