Slide26.JPG

Slide27.JPG
Slide28.JPG
Slide29.JPG
Slide30.JPG Slide31.JPG

Go Ad-free

Transcript

Ex 8.1, 8 If 3 cot A = 4, check whether ((1 βˆ’ π‘‘π‘Žπ‘›2𝐴))/((1 + π‘‘π‘Žπ‘›2𝐴))= cos2 A – sin2A or not. Given 3 cot A = 4 cot A = πŸ’/πŸ‘ So, tan A = 1/cot⁑𝐴 tan A = 1/((4/3) ) tan A = πŸ‘/πŸ’ Now, tan A = 3/4 (π‘Ίπ’Šπ’…π’† π’π’‘π’‘π’π’”π’Šπ’•π’† βˆ π‘¨)/(π‘Ίπ’Šπ’…π’† 𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕 βˆ π‘¨) = πŸ‘/πŸ’ 𝑩π‘ͺ/𝑨𝑩 = πŸ‘/πŸ’ Let BC = 3x & AB = 4x We find AC using Pythagoras theorem In right triangle ABC (Hypotenuse)2 = (Height)2 + (Base)2 (AC)2 = (AB)2 + (BC)2 (AC)2 = (4x)2 + (3x)2 (AC)2 = 16x2 + 9x2 (AC)2 = 25x2 AC = √(25"x2" ) AC = 5x Now, sin 𝑨 = (𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ ∠𝐴)/π»π‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ = 𝐡𝐢/𝐴𝐢 = 3π‘₯/5π‘₯ = πŸ‘/πŸ“ Similarly, cos A = (𝑠𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ 𝐴)/π»π‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ = 𝐴𝐡/𝐴𝐢 = 4π‘₯/5π‘₯ = πŸ’/πŸ“ We have to check whether , (1 βˆ’ π‘‘π‘Žπ‘›2 𝐴)/(1 + π‘‘π‘Žπ‘›2 𝐴 ) = cos2 A – sin2 A (𝟏 βˆ’ π’•π’‚π’πŸ 𝑨)/(𝟏 + π’•π’‚π’πŸ 𝑨 ) Putting tan A = 3/4 = (𝟏 βˆ’ (πŸ‘/πŸ’)^𝟐)/(𝟏 + (πŸ‘/πŸ’)^𝟐 ) = ((1 βˆ’ 9/16))/((1 + 9/16) ) = (((16 βˆ’ 9)/16))/(((16 + 9)/16) ) = (16 βˆ’ 9)/(16 + 9) = πŸ•/πŸπŸ“ cos2 A – sin2 A Putting cos A = 4/5 & sin A = 3/5 = (πŸ’/πŸ“)^πŸβˆ’(πŸ‘/πŸ“)^𝟐 = 16/25 βˆ’ 9/25 = (16 βˆ’ 9)/25 = πŸ•/πŸπŸ“ Since L.H.S = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo