Slide4.JPG

Slide5.JPG
Slide6.JPG

Go Ad-free

Transcript

Ex 8.1, 2 In figure , find tan P – cot R. Finding sides of triangle In right βˆ† 𝑷𝑸𝑹, Using Pythagoras theorem (Hypotenuse)2 = (Height)2 + (Base)2 PR2 = PQ2 + QR2 132 = 122 + QR2 169 = 144 + QR2 169 – 144 = QR2 25 = QR2 QR2 = 25 QR = βˆšπŸπŸ“ QR = √(5^2 ) QR = 5 Thus, QR = 5 cm Finding tan P tan P = (𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ βˆ π‘ƒ)/(𝑠𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œβˆ π‘ƒ) = 𝑄𝑅/𝑃𝑄 = πŸ“/𝟏𝟐 Finding cot R For cot R , Lets first find tan R tan R = (𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ βˆ π‘…)/(𝑠𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œβˆ π‘…) = 𝑃𝑄/𝑄𝑅 = 𝟏𝟐/πŸ“ Hence, cot R = 1/tan⁑〖 𝑅〗 = πŸ“/𝟏𝟐 Now, tan P – cot R = 5/12βˆ’5/12 = 0

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo