Slide24.JPG Slide25.JPG Slide26.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Example 5 Find a point on the y−axis which is equidistant from the points A(6, 5) and B(– 4, 3). Given A(6, 5) & B(−4, 3) Since the required point is in y-axis, its x –coordinate will be zero Let Required point = C (0, a) As per question, point C is equidistant from A & B Hence, AC = BC Finding AC & BC separately Finding AC x1 = 6 , y1 = 5 x2 = 0 , y2 = a AC = √((𝑥2 −𝑥1)2+(𝑦2 −𝑦1)2) = √(( 0 −6)2+(𝑎−5)2) = √((−6)2+(𝑎 −5)2) = √((6)2+(𝑎 −5)2) = √((6)2+ 𝑎2+52 −2(5)(𝑎) ) = √(36+ 𝑎2+25 −10𝑎) = √(𝒂𝟐 −𝟏𝟎𝒂+𝟔𝟏) Finding BC x1 = −4 , y1 = 3 x2 = 0 , y2 = a BC = √((𝑥2 −𝑥1)2+(𝑦2 −𝑦1)2) = √(( 0 −(−4))2+(3 −𝑎)2) = √((0+4)2+(3 −𝑎)2) = √((4)2+(3 −𝑎)2) = √((4)2+ 𝑎2+32−2(3)(𝑎) ) = √(16+ 𝑎2+9−6𝑎) = √(𝒂𝟐−𝟔𝒂+𝟐𝟓) Now, AC = BC √(𝑎2 −10𝑎+61) = √(𝑎2−6𝑎+25) Squaring both sides (√(𝑎2 −10𝑎+61) " )2 = (" √(𝑎2−6𝑎+25))^2 a2 – 10a + 61 = a2 − 6a + 25 a2 – 10a − a2 + 6a = 25 – 61 −4a = −36 a = (−36)/(−4) a = 9 Hence the required point is C(0, a) = (0, 9)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo