Ex 6.4, 8 - ABC and BDE are two equilateral triangles - Area of similar triangles

Ex 6.4, 8 - Chapter 6 Class 10 Triangles - Part 2

Ex 6.4, 8 - Chapter 6 Class 10 Triangles - Part 3
Ex 6.4, 8 - Chapter 6 Class 10 Triangles - Part 4

Go Ad-free

Transcript

Question 8 (Introduction) Tick the correct answer and justify : ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the areas of triangles ABC and BDE is 2 : 1 (B) 1 : 2 (C) 4 : 1 (D) 1 : 4 Two equilateral triangle are always similar In = 12 6 = 12 6 = 12 6 Hence by SSS similarity ~ Question 8 Tick the correct answer and justify : ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the areas of triangles ABC and BDE is 2 : 1 (B) 1 : 2 (C) 4 : 1 (D) 1 : 4 Given: is equilateral is equilateral BD = 1/2 as D is midpoint of BC To find: ( )/( ) Solution: Since , and are equilateral, Their sides would be in the same ratio / = / = / Hence, by SSS similarity ~ And , we know that ratio of area of triangle is equal To the ratio of square of corresponding sides So, ( )/( )=( )^2/( )2 =( )^2/( /2)^2 = 2/(( ^2)/4) =4 2/ 2 = 4/1 Hence, ( )/( )=4/1 i.e. 4 : 1 Option (C) is correct

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo