Find the vector and the Cartesian equations of the plane containing the point ๐‘–ย ฬ‚+2๐‘—ย ฬ‚โˆ’๐‘˜ย ฬ‚ and parallel to the lines ๐‘Ÿย โƒ— = (๐‘–ย ฬ‚+2๐‘—ย ฬ‚+2๐‘˜ย ฬ‚ ) + s (2๐‘–ย ฬ‚โˆ’3๐‘—ย ฬ‚+2๐‘˜ย ฬ‚ ) = 0 and ๐‘Ÿย โƒ— = (3๐‘–ย ฬ‚+๐‘—ย ฬ‚โˆ’2๐‘˜ย ฬ‚ ) + t (๐‘–ย ฬ‚โˆ’3๐‘—ย ฬ‚+๐‘˜ย ฬ‚ ) = 0

This question is similar to Misc 13 Chapter 11 Class 12 - Three Dimensional Geometry

[SQP] Find vector and cartesian equations of plane containing point i+ - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2)

part 2 - Question 10 (Choice 2) - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 3 - Question 10 (Choice 2) - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12

Remove Ads

Transcript

Question 10 (Choice 2) Find the vector and the Cartesian equations of the plane containing the point ๐‘– ฬ‚+2๐‘— ฬ‚โˆ’๐‘˜ ฬ‚ and parallel to the lines ๐‘Ÿ โƒ— = (๐‘– ฬ‚+2๐‘— ฬ‚+2๐‘˜ ฬ‚ ) + s (2๐‘– ฬ‚โˆ’3๐‘— ฬ‚+2๐‘˜ ฬ‚ ) = 0 and ๐‘Ÿ โƒ— = (3๐‘– ฬ‚+๐‘— ฬ‚โˆ’2๐‘˜ ฬ‚ ) + t (๐‘– ฬ‚โˆ’3๐‘— ฬ‚+๐‘˜ ฬ‚ ) = 0 Given that Plane is parallel to lines ๐‘Ÿ โƒ— = (๐‘– ฬ‚+2๐‘— ฬ‚+2๐‘˜ ฬ‚ ) + s (2๐‘– ฬ‚โˆ’3๐‘— ฬ‚+2๐‘˜ ฬ‚ ) and ๐‘Ÿ โƒ— = (3๐‘– ฬ‚+๐‘— ฬ‚โˆ’2๐‘˜ ฬ‚ ) + t (๐‘– ฬ‚โˆ’3๐‘— ฬ‚+๐‘˜ ฬ‚ ) Thus, Normal will be perpendicular to both their parallel vectors โˆด Normal of plane = (๐Ÿ๐’Š ฬ‚โˆ’๐Ÿ‘๐’‹ ฬ‚+๐Ÿ๐’Œ ฬ‚ ) ร— (๐’Š ฬ‚โˆ’๐Ÿ‘๐’‹ ฬ‚+๐’Œ ฬ‚ ) = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@2&โˆ’3&2@1&โˆ’3&1)| = ๐‘– ฬ‚ (โˆ’3(1) โ€“ (โˆ’3)(2)) โ€“ ๐‘— ฬ‚ (2(1) โ€“ 1(2)) + ๐‘˜ ฬ‚(2(โˆ’3) โ€“ 1(โˆ’3)) = ๐‘– ฬ‚ (โˆ’3 + 6) โ€“ ๐‘— ฬ‚ (2 โˆ’ 2) + ๐‘˜ ฬ‚(โˆ’6 + 3) = 3๐’Š ฬ‚ โ€“ 3๐’Œ ฬ‚ Now, Equation of plane passing through point A whose position vector is ๐’‚ โƒ— & perpendicular to ๐’ โƒ— is (๐’“ โƒ— โˆ’ ๐’‚ โƒ—) . ๐’ โƒ— = 0 Thus, Equation of plane passing through ๐’‚ โƒ— =๐‘– ฬ‚+2๐‘— ฬ‚โˆ’๐‘˜ ฬ‚ & perpendicular to ๐’ โƒ— = 3๐‘– ฬ‚ โ€“ 3๐‘˜ ฬ‚ is [๐’“ โƒ—โˆ’(๐’Š ฬ‚+๐Ÿ๐’‹ ฬ‚โˆ’๐’Œ ฬ‚)]. (๐Ÿ‘๐’Š ฬ‚โˆ’๐Ÿ‘๐’Œ ฬ‚) = 0 Finding Cartesian form Putting ๐’“ โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚ [(๐‘ฅ๐‘– ฬ‚+๐‘ฆ๐‘— ฬ‚+๐‘ง๐‘˜ ฬ‚ )โˆ’(๐‘– ฬ‚+2๐‘— ฬ‚โˆ’๐‘˜ ฬ‚)]. (3๐‘– ฬ‚ โˆ’ 3๐‘˜ ฬ‚) = 0 [(๐‘ฅโˆ’1) ๐‘– ฬ‚+(๐‘ฆโˆ’2) ๐‘— ฬ‚+ (๐‘งโˆ’(โˆ’ 1))๐‘˜ ฬ‚ ]. (3๐‘– ฬ‚ โˆ’ 3๐‘˜ ฬ‚) = 0 3(x โˆ’ 1) + 0 (y โˆ’ 2) + (โˆ’3)(z + 1) = 0 3x โˆ’ 3 โˆ’ 3z โˆ’ 3 = 0 3x โˆ’ 3z โˆ’ 6 = 0 3(x โˆ’ z โˆ’ 2) = 0 x โˆ’ z โˆ’ 2 = 0

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo