Find ∫1β–’γ€–(x + 1)/((x^2Β  + 1)Β  x) dxγ€—

This question is similar to Ex 13.2, 2 - Chapter 13 Class 12 - Probability

Question 7 - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2)

part 2 - Question 7 - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 3 - Question 7 - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 4 - Question 7 - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 5 - Question 7 - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12 part 6 - Question 7 - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12

Remove Ads

Transcript

Question 7 Find ∫1β–’γ€–(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯γ€—Let (π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) = (𝑨𝒙 + 𝑩)/((𝒙^𝟐 + 𝟏) ) + π‘ͺ/𝒙 (π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) = ((𝐴π‘₯ + 𝐡)π‘₯ + 𝐢(1 + π‘₯^2 ))/((π‘₯^2 + 1) π‘₯) By cancelling denominator 𝒙 + 𝟏 = (𝑨𝒙 + 𝑩)𝒙 + π‘ͺ(𝟏 + 𝒙^𝟐 ) Putting 𝒙=𝟎 0 + 1 = (𝐴(0) + 𝐡) Γ— 0 + 𝐢(1 +0^2 ) 1 = 𝐢 π‘ͺ = 𝟏 Putting 𝒙=𝟏 1 + 1 = (𝐴(1) + 𝐡) Γ— 1 + 𝐢(1 +1^2 ) 2 = (𝐴 + 𝐡) +2𝐢 Putting 𝐢 = 1 2 = (𝐴 + 𝐡) +2 Γ— 1 2 = (𝐴 + 𝐡) +2 2βˆ’2 = (𝐴 + 𝐡) 0 = 𝐴 + 𝐡 𝑨=βˆ’ 𝑩 Putting 𝒙=βˆ’πŸ βˆ’1 + 1 = (𝐴(βˆ’1) + 𝐡) Γ— βˆ’1 + 𝐢(1 +γ€–(βˆ’1)γ€—^2 ) 0 = βˆ’(βˆ’π΄ + 𝐡) +𝐢 Γ— (1+1) 0 = βˆ’(βˆ’π΄ + 𝐡) +2𝐢 Putting 𝐴=βˆ’ 𝐡 0 = βˆ’(𝐡 + 𝐡) +2𝐢 0 = βˆ’2B +2𝐢 2B =2𝐢 B =𝐢 Putting 𝐢 = 1 𝑩 = 𝟏 And, 𝐴=βˆ’π΅ ∴ 𝑨=βˆ’πŸ Thus, 𝐴=βˆ’1, 𝐡=1, 𝐢 = 1 So, we can write (𝒙 + 𝟏)/((𝒙^𝟐 + 𝟏) 𝒙) = (𝐴π‘₯ + 𝐡)/((π‘₯^2 + 1) ) + 𝐢/π‘₯ = ((βˆ’1)π‘₯ +1)/((π‘₯^2 + 1) ) + 1/π‘₯ = (βˆ’π’™ + 𝟏)/((𝒙^𝟐 + 𝟏) ) + 𝟏/𝒙 Therefore integrating ∫1β–’(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯ = ∫1β–’(βˆ’π’™ + 𝟏)/((𝒙^𝟐 + 𝟏) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯ + 1)/((π‘₯^2 + 1) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯^2 + 1) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢 = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢 Solving 𝐈1 I1 = ∫1β–’(βˆ’π‘₯)/(π‘₯^2 + 1) 𝑑π‘₯ Let 𝒕 = 𝒙^𝟐+𝟏 𝑑𝑑/𝑑π‘₯ = 2π‘₯ 𝑑𝑑/2π‘₯ = 𝑑π‘₯ Hence ∫1β–’(βˆ’π‘₯)/(π‘₯^2 + 1) 𝑑π‘₯ = ∫1β–’γ€–(βˆ’π‘₯)/𝑑 . 𝑑𝑑/2π‘₯γ€— = βˆ’βˆ«1▒𝑑𝑑/2(𝑑) = (βˆ’1)/2 γ€–log 〗⁑|𝑑|+𝐢1 Putting back t = π‘₯^2+1 = (βˆ’πŸ)/𝟐 γ€–π’π’π’ˆ 〗⁑|𝒙^𝟐+𝟏|+π‘ͺ𝟐 Therefore integrating ∫1β–’(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯ = (βˆ’πŸ)/𝟐 γ€–π’π’π’ˆ 〗⁑|𝒙^𝟐+𝟏| + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo