Find ∫1▒γ€–(x + 1)/((x^2  + 1)  x) dxγ€—

This question is similar to Ex 13.2, 2 - Chapter 13 Class 12 - Probability

Slide19.JPG

Slide20.JPG
Slide21.JPG
Slide22.JPG
Slide23.JPG Slide24.JPG

Go Ad-free

Transcript

Question 7 Find ∫1β–’γ€–(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯γ€—Let (π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) = (𝑨𝒙 + 𝑩)/((𝒙^𝟐 + 𝟏) ) + π‘ͺ/𝒙 (π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) = ((𝐴π‘₯ + 𝐡)π‘₯ + 𝐢(1 + π‘₯^2 ))/((π‘₯^2 + 1) π‘₯) By cancelling denominator 𝒙 + 𝟏 = (𝑨𝒙 + 𝑩)𝒙 + π‘ͺ(𝟏 + 𝒙^𝟐 ) Putting 𝒙=𝟎 0 + 1 = (𝐴(0) + 𝐡) Γ— 0 + 𝐢(1 +0^2 ) 1 = 𝐢 π‘ͺ = 𝟏 Putting 𝒙=𝟏 1 + 1 = (𝐴(1) + 𝐡) Γ— 1 + 𝐢(1 +1^2 ) 2 = (𝐴 + 𝐡) +2𝐢 Putting 𝐢 = 1 2 = (𝐴 + 𝐡) +2 Γ— 1 2 = (𝐴 + 𝐡) +2 2βˆ’2 = (𝐴 + 𝐡) 0 = 𝐴 + 𝐡 𝑨=βˆ’ 𝑩 Putting 𝒙=βˆ’πŸ βˆ’1 + 1 = (𝐴(βˆ’1) + 𝐡) Γ— βˆ’1 + 𝐢(1 +γ€–(βˆ’1)γ€—^2 ) 0 = βˆ’(βˆ’π΄ + 𝐡) +𝐢 Γ— (1+1) 0 = βˆ’(βˆ’π΄ + 𝐡) +2𝐢 Putting 𝐴=βˆ’ 𝐡 0 = βˆ’(𝐡 + 𝐡) +2𝐢 0 = βˆ’2B +2𝐢 2B =2𝐢 B =𝐢 Putting 𝐢 = 1 𝑩 = 𝟏 And, 𝐴=βˆ’π΅ ∴ 𝑨=βˆ’πŸ Thus, 𝐴=βˆ’1, 𝐡=1, 𝐢 = 1 So, we can write (𝒙 + 𝟏)/((𝒙^𝟐 + 𝟏) 𝒙) = (𝐴π‘₯ + 𝐡)/((π‘₯^2 + 1) ) + 𝐢/π‘₯ = ((βˆ’1)π‘₯ +1)/((π‘₯^2 + 1) ) + 1/π‘₯ = (βˆ’π’™ + 𝟏)/((𝒙^𝟐 + 𝟏) ) + 𝟏/𝒙 Therefore integrating ∫1β–’(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯ = ∫1β–’(βˆ’π’™ + 𝟏)/((𝒙^𝟐 + 𝟏) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯ + 1)/((π‘₯^2 + 1) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯^2 + 1) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢 = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢 Solving 𝐈1 I1 = ∫1β–’(βˆ’π‘₯)/(π‘₯^2 + 1) 𝑑π‘₯ Let 𝒕 = 𝒙^𝟐+𝟏 𝑑𝑑/𝑑π‘₯ = 2π‘₯ 𝑑𝑑/2π‘₯ = 𝑑π‘₯ Hence ∫1β–’(βˆ’π‘₯)/(π‘₯^2 + 1) 𝑑π‘₯ = ∫1β–’γ€–(βˆ’π‘₯)/𝑑 . 𝑑𝑑/2π‘₯γ€— = βˆ’βˆ«1▒𝑑𝑑/2(𝑑) = (βˆ’1)/2 γ€–log 〗⁑|𝑑|+𝐢1 Putting back t = π‘₯^2+1 = (βˆ’πŸ)/𝟐 γ€–π’π’π’ˆ 〗⁑|𝒙^𝟐+𝟏|+π‘ͺ𝟐 Therefore integrating ∫1β–’(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯ = (βˆ’πŸ)/𝟐 γ€–π’π’π’ˆ 〗⁑|𝒙^𝟐+𝟏| + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo