The internal and external radii of a spherical shell are 3cm and 5cm respectively. It is melted and recast into a solid cylinder of diameter 14cm, find the height of the cylinder. Also find the total surface area of the cylinder. ("Take 𝜋 = " 22/7)

 

Slide43.JPG

Slide44.JPG
Slide45.JPG
Slide46.JPG
Slide47.JPG

Go Ad-free

Transcript

The internal and external radii of a spherical shell are 3cm and 5cm respectively. It is melted and recast into a solid cylinder of diameter 14cm, find the height of the cylinder. Also find the total surface area of the cylinder. ("Take 𝜋 = " 22/7) Since spherical shell is melted into a cylinder , So, Volume of spherical shell = Volume of cylinder Volume of spherical shell Internal Radius = r = 3 cm External Radius = R = 5 cm Volume of spherical shell = 4/3 𝜋𝑅3−4/3 𝜋𝑟3 = 𝟒/𝟑 𝝅(𝑹^𝟑−𝒓^𝟑) = 4/3 𝜋(5^3−3^3) = 4/3 𝜋(126−27) = 𝟒/𝟑 𝝅 × 𝟗𝟖 Volume of cylinder Given, Diameter = 14 cm ∴ Radius = r = 7 cm Let height = h cm Volume of cylinder = 𝜋𝑟2ℎ = 𝜋×7^2×ℎ = 49𝝅h Now, Volume of spherical shell = Volume of cylinder 𝟒𝝅/𝟑 × 𝟗𝟖=𝟒𝟗𝝅𝒉 4𝜋/3 × 98 ×1/49𝜋=ℎ 4/3 × 2 =ℎ 8/3 =ℎ 𝒉=𝟖/𝟑 cm We also need to find find the total surface area of the cylinder Total Surface Area of cylinder = 2𝜋𝑟ℎ+2𝜋r^2 = 𝟐𝝅𝒓(𝒉+𝒓) Putting values = 2 ×22/7 × 7 × (8/3+7) = 2 × 22 × ((8 + 7 × 3)/3) = 44 × ((8 + 21)/3) = 𝟒𝟒 ×𝟐𝟗/𝟑 = 1276/3 = 425.33 cm2

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo