Find f log x (1 + log x) 2 dx

This question is similar to Ex 7.2, 35 - Chapter 7 Class 12 - Integrals

Slide1.JPG

Slide2.JPG
Slide3.JPG

Go Ad-free

Transcript

Question 1 – Choice 1 Find ∫1β–’γ€–log⁑π‘₯/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€—Let 𝐈=∫1β–’γ€–log⁑π‘₯/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–(π’π’π’ˆβ‘π’™ + 𝟏 βˆ’ 𝟏)/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–((1 + log⁑π‘₯) βˆ’ 1)/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–((1 + log⁑π‘₯) )/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–1/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–(𝟏 )/((𝟏 + π’π’π’ˆβ‘π’™ ) ) π’…π’™γ€—βˆ’βˆ«1β–’γ€–πŸ/(𝟏 + π’π’π’ˆβ‘π’™ )^𝟐 𝒅𝒙〗 Solving ∫1β–’γ€–(𝟏 )/((𝟏 + π₯𝐨𝐠⁑𝐱 ) ) 𝐝𝐱〗 Using Integration by parts ∫1β–’γ€–(𝟏 )/((𝟏 + π’π’π’ˆβ‘π’™ ) ) 𝒅𝒙〗 = ∫1β–’γ€–(1 )/((1 + π‘™π‘œπ‘”β‘π‘₯ ) ) Γ— 1 𝑑π‘₯γ€— = 1/((1 + log⁑π‘₯)) ∫1β–’γ€–1 𝑑π‘₯γ€—βˆ’βˆ«1β–’(𝒅(𝟏/(𝟏 + π’π’π’ˆ 𝒙))/𝒅𝒙 ∫1β–’γ€–πŸ 𝒅𝒙〗) 𝒅𝒙 = 1/((1 + log⁑π‘₯))Γ— π‘₯βˆ’βˆ«1β–’((βˆ’πŸ)/(𝟏 +π’π’π’ˆ 𝒙)^𝟐 Γ—πŸ/𝒙 Γ— 𝒙) 𝒅𝒙 = π‘₯/((1 + log⁑π‘₯))+∫1β–’πŸ/(𝟏 + π’π’π’ˆ 𝒙)^𝟐 𝒅𝒙We know that ∫1▒〖𝑓(π‘₯) 𝑔⁑(π‘₯) γ€— 𝑑π‘₯=𝑓(π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯βˆ’βˆ«1β–’(𝑓^β€² (π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯) 𝑑π‘₯ Putting f(x) = 1/(1 + log x) and g(x) = 1 Thus I=∫1β–’γ€–(1 )/((1 + π‘™π‘œπ‘”β‘π‘₯ ) ) 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–1/(1 + π‘™π‘œπ‘”β‘π‘₯ )^2 𝑑π‘₯γ€— = π‘₯/((1 + log⁑π‘₯))+∫1β–’1/(1 + π‘™π‘œπ‘” π‘₯)^2 𝑑π‘₯βˆ’βˆ«1β–’γ€–1/(1 + π‘™π‘œπ‘”β‘π‘₯ )^2 𝑑π‘₯γ€— = 𝒙/((𝟏 + π’π’π’ˆβ‘π’™))+π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo