If ∫ (3e^x - 5e^(-x)) / (4e^x + 5e^(-x)) dx = ax + b log⁡ |4e^x + 5e^(-x) | + C, then
(A) a = (-1)/8, b = 7/8
(B) a = 1/8, b = 7/8
(C) a = (-1)/8, b = (-7)/8
(D) a = 1/8, b = (-7)/8
NCERT Exemplar MCQ
Last updated at April 16, 2024 by Teachoo
Question 3 If β«1βγ(3π^π₯ β 5π^(βπ₯) )/(4π^π₯ + 5π^(βπ₯) ) ππ₯=ππ₯+π logβ‘γ|4π^π₯+5π^(βπ₯) |γ+πΆγ, then π=(β1)/8, π=7/8 (B) π=1/8, π=7/8 (C) π=(β1)/8, π=(β7)/8 (D) π=1/8, π=(β7)/8 To solve this, We write (ππ^π β ππ^(βπ) )/(ππ^π + ππ^(βπ) ) as (3π^π₯ β 5π^(βπ₯) )/(4π^π₯ + 5π^(βπ₯) ) = a + b Γ (π(ππ^π + ππ^(βπ) )/π π)/(ππ^π + ππ^(βπ) ) (3π^π₯ β 5π^(βπ₯) )/(4π^π₯ + 5π^(βπ₯) ) = a + b Γ (4π^π₯ β 5π^(βπ₯))/(4π^π₯ + 5π^(βπ₯) ) (3π^π₯ β 5π^(βπ₯) )/(4π^π₯ + 5π^(βπ₯) ) = (π Γ (4π^π₯ + 5π^(βπ₯) ) + π Γ (4π^π₯ β 5π^(βπ₯)))/(4π^π₯ + 5π^(βπ₯) ) 3π^π₯ β 5π^(βπ₯) = π Γ (4π^π₯+ 5π^(βπ₯) ) + π Γ (4π^π₯ β 5π^(βπ₯)) 3π^π₯ β 5π^(βπ₯) = 4π π^π₯+5π π^(βπ₯)+4π π^π₯β5π π^(βπ₯) ππ^π β ππ^(βπ) = π^π (ππ+ππ)+π^(βπ) (ππβππ) π = ππ+ππ 4π+4π=3 π+π=3/4 βπ = ππβπππ 5πβ5π=β5 πβπ=β1 Thus, our equations are π+π=3/4 β¦(1) πβπ=β1 β¦(2) Adding (1) and (2) π+π+πβb=3/4β1 2a=(β1)/4 π=(βπ)/π Putting value of a in (1) π+π=3/4 (βπ)/π+π=π/π π=3/4+1/8 π=6/8+1/8 π=7/8 Thus, π=(βπ)/π and π=7/8 So, the correct answer is (a)