Chapter 7 Class 12 Integrals
Serial order wise

Odd function  f(x) = -f(x) 

Even function  g(x) = g(x) 

Based on the above information, answer any four  of the following questions.

Slide2.JPG

Question 1

1 (-1)  x 99    dx=______________.

(a) 0   (b) 1  (c) −1  (d) 2

Slide3.JPG

Question 2

π x cos x dx =______________.

(a) 1   (b) 0      (c) −1      (d) π/2

Slide4.JPG

Question 3

π/2 -π/2   sin 3 π‘₯ 𝑑π‘₯ = _________.

(a) 1    (b) 0     (c) −1     (d) π

Slide5.JPG

 

Question 4

π   π‘₯ sin π‘₯ 𝑑π‘₯ = _________.

(a) π      (b) 0           (c) 2π            (d) π/2

Slide6.JPG Slide7.JPG Slide8.JPG

Question 5

π   tanπ‘₯ sec 2 π‘₯ 𝑑π‘₯ = _________.

(a) 1            (b) −1          (c) 0            (d) 2

Slide9.JPG

Go Ad-free

Transcript

Question 1 Based on the above information, answer any four of the following questions. Question 1 ∫1_(βˆ’1)^1β–’π‘₯^99 𝑑π‘₯=______________. (a) 0 (b) 1 (c) βˆ’1 (d) 2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=π‘₯^99 𝒇(βˆ’π’™)=(βˆ’π‘₯)^99=βˆ’π‘₯^99 Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_(βˆ’1)^1β–’π‘₯^99 𝑑𝒙= 0 So, the correct answer is (a) Question 2 ∫1_(βˆ’πœ‹)^πœ‹β–’γ€– π‘₯ cos⁑π‘₯ γ€— 𝑑π‘₯=______________. (a) 1 (b) 0 (c) βˆ’1 (d) πœ‹/2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=π‘₯ π‘π‘œπ‘  π‘₯ 𝒇(βˆ’π’™)=(βˆ’π‘₯) cos⁑〖(βˆ’π‘₯)γ€—=βˆ’π‘₯ cos⁑π‘₯ Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_(βˆ’πœ‹)^πœ‹β–’γ€– π‘₯ cos⁑π‘₯ γ€— 𝑑π‘₯= 0 So, the correct answer is (b) Question 3 ∫1_((βˆ’πœ‹)/2)^(πœ‹/2 )β–’γ€– sinγ€—^3⁑π‘₯ 𝑑π‘₯ = _________. (a) 1 (b) 0 (c) βˆ’1 (d) πœ‹ This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=sin^3⁑π‘₯ 𝒇(βˆ’π’™)=sin^3⁑〖(βˆ’π‘₯)γ€—=(βˆ’sin⁑π‘₯ )^3=βˆ’sin^3⁑π‘₯ Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_((βˆ’πœ‹)/2)^(πœ‹/2 )β–’γ€– sinγ€—^3⁑π‘₯ 𝑑π‘₯ = 0 So, the correct answer is (b) Question 4 ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ = _________. (a) πœ‹ (b) 0 (c) 2πœ‹ (d) πœ‹/2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=π‘₯ 𝑠𝑖𝑛 π‘₯ 𝒇(βˆ’π’™)=(βˆ’π‘₯) 〖𝑠𝑖𝑛 〗⁑〖(βˆ’π‘₯)γ€—=βˆ’π‘₯ Γ— βˆ’sin⁑π‘₯=π‘₯ sin⁑〖π‘₯ γ€— Thus, 𝒇(βˆ’π’™) =𝒇⁑(𝒙) Therefore, ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ = 2∫1_0^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ Let I = 𝟐∫1_𝟎^𝝅▒〖𝒙 π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ I = 2∫1_0^πœ‹β–’γ€–(𝝅 βˆ’π’™) 𝑠𝑖𝑛 〗⁑〖(πœ‹ βˆ’π‘₯) γ€— 𝑑π‘₯ I = 2∫1_0^πœ‹β–’γ€–(πœ‹ βˆ’π‘₯) 𝑠𝑖𝑛 〗⁑〖π‘₯ γ€— 𝑑π‘₯ I = 𝟐∫1_𝟎^π…β–’γ€–πœ‹ π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ βˆ’ 𝟐∫1_𝟎^𝝅▒〖𝒙 π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ Adding (1) and (2) I + I = 2∫1_0^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ + 2∫1_0^πœ‹β–’γ€–πœ‹ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ βˆ’ 2∫1_0^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ 2I = 2∫1_0^πœ‹β–’γ€–πœ‹ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ I = ∫1_𝟎^𝝅▒〖𝝅 π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ I = πœ‹βˆ«1_0^πœ‹β–’γ€–π‘ π‘–π‘› 〗⁑π‘₯ 𝑑π‘₯ I = 𝝅〖[βˆ’πœπ¨π¬β‘π’™]γ€—_𝟎^𝝅 I = πœ‹[βˆ’cosβ‘γ€–πœ‹ βˆ’(βˆ’cos⁑0)γ€—] I = πœ‹[βˆ’cosβ‘πœ‹+cos⁑0] I = πœ‹[βˆ’(βˆ’1)+1] I = πœ‹ [1+1] I = πŸπ… So, the correct answer is (c) Question 5 ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–tan⁑π‘₯ sec^2⁑π‘₯ γ€— 𝑑π‘₯ = _________. (a) 1 (b) βˆ’1 (c) 0 (d) 2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=tan⁑π‘₯ sec^2⁑π‘₯ 𝒇(βˆ’π’™)=tan⁑〖(βˆ’π‘₯)γ€— sec^2⁑〖(βˆ’π‘₯)γ€—=βˆ’tan⁑π‘₯ sec^2⁑〖π‘₯ γ€— Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–tan⁑π‘₯ sec^2⁑π‘₯ γ€— " 𝑑π‘₯"= 0 So, the correct answer is (c)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo